Suppr超能文献

腰椎CT上小关节骨关节炎放射学特征的综合评估:一种多任务深度学习方法。

Comprehensive Evaluation of Facet Joints Osteoarthritis Radiological Features on Lumbar CT: A Multitask Deep Learning Approach.

作者信息

Wang Yunfei, Chen Ziyang, Huang Junzhang, He Qingqing, Leng Dongming, Yang Lei, Feng Jiaxin, Lu Junjie, Chen Tao, Feng Qianjin, Su Zhihai, Lu Hai, Lu Sheng

机构信息

Department of Orthopedics The First People's Hospital of Yunnan Province & the Affiliated Hospital of Kunming University of Science and Technology, the Key Laboratory of Digital Orthopaedics of Yunnan Province, the International Union Laboratory of Intelligent Orthopedics of Yunnan Province, the Clinical Medicine Center of Spinal and Spinal Cord Disorders of Yunnan Province Kunming China.

Intelligent Orthopedics Medical Technology Research Centre of Kunming University of Science and Technology Kunming China.

出版信息

JOR Spine. 2025 Sep 11;8(3):e70115. doi: 10.1002/jsp2.70115. eCollection 2025 Sep.

Abstract

BACKGROUND

Accurately evaluating the radiological features of facet joint osteoarthritis (FJOA) may help to elucidate its relationship with pain. Multitask deep learning (DL) models have emerged as promising tools for this purpose.

MATERIALS AND METHODS

This retrospective study employed a dataset of 13 223 axial CT facet joint (FJ) patches cropped from 1 360 patients across two hospitals. At the image level, the dataset was categorized as training dataset ( = 7430), validation dataset ( = 2000), internal test dataset ( = 1890), and external test dataset ( = 1903). The radiologic features of FJOA were qualitatively assessed using a multitask DL model based on ResNet-18 according to the FJOA grading guidelines proposed by Weishaupt. Two batches of images from each of the internal and external test datasets were used to test the change in readers' assessment accuracy with and without DL assistance, as measured using a paired test.

RESULTS

In this study, the accuracy of the model on the internal and external test datasets was 89.8% and 76.6% for joint space narrowing (JSN), 79.6% and 80.2% for osteophytes, 65.5% and 56% for hypertrophy, 88% and 89.6% for subchondral bone erosions, and 82.8% and 89.8% for subchondral cysts. The model's Gwet values reach 0.88. When junior readers used the DL model for assistance, the accuracy was significantly improved ( value ranged from < 0.001 to 0.043).

CONCLUSION

A multitask DL model is a viable method for assessing the severity of radiological features in FJOA, offering support to readers during image evaluation.

摘要

背景

准确评估小关节骨关节炎(FJOA)的放射学特征可能有助于阐明其与疼痛的关系。多任务深度学习(DL)模型已成为实现这一目的的有前景的工具。

材料与方法

这项回顾性研究使用了从两家医院的1360例患者中裁剪出的13223个轴向CT小关节(FJ)图像块数据集。在图像层面,该数据集被分类为训练数据集(=7430)、验证数据集(=2000)、内部测试数据集(=1890)和外部测试数据集(=1903)。根据Weishaupt提出的FJOA分级指南,使用基于ResNet-18的多任务DL模型对FJOA的放射学特征进行定性评估。使用配对检验来衡量,内部和外部测试数据集中的两批图像分别用于测试有无DL辅助时读者评估准确性的变化。

结果

在本研究中,模型在内部和外部测试数据集上对于关节间隙变窄(JSN)的准确率分别为89.8%和76.6%,骨赘的准确率分别为79.6%和80.2%,肥大的准确率分别为65.5%和56%,软骨下骨侵蚀的准确率分别为88%和89.6%,软骨下囊肿的准确率分别为82.8%和89.8%。模型的Gwet值达到0.88。当初级读者使用DL模型进行辅助时,准确率显著提高(值范围从<0.001到0.043)。

结论

多任务DL模型是评估FJOA放射学特征严重程度的一种可行方法,在图像评估过程中为读者提供支持。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d12/12424607/263d66a2883a/JSP2-8-e70115-g005.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验