Suppr超能文献

一种基于结构的方法,通过与人类嗅觉受体的对接模拟来预测分子的气味相似性。

A Structure-Based Approach for Predicting Odor Similarity of Molecules via Docking Simulations with Human Olfactory Receptors.

作者信息

Kaneshiro Hirotada, Sato Masakazu, Tanaka Airi, Nakata Shuya, Aihara Yoshiko, Kitoh-Nishioka Hirotaka, Mori Yoshiharu, Tanaka Shigenori

机构信息

Graduate School of System Informatics, Kobe University, Kobe 657-8501, Japan.

Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan.

出版信息

ACS Omega. 2025 Aug 22;10(35):39933-39945. doi: 10.1021/acsomega.5c04324. eCollection 2025 Sep 9.

Abstract

The mechanisms underlying human odor recognition remain largely unclear, making it challenging to predict the scent of a novel molecule based solely on its molecular structure. Unlike taste, which is classified into a limited number of categories, odor perception is highly complex and lacks universally defined labels, rendering absolute odor classification inherently ambiguous. To address this issue, we propose a relative evaluation framework for odor prediction, focusing on odor similarity rather than absolute descriptors. In this study, we constructed three-dimensional structures of approximately 400 human olfactory receptors (hORs) using AlphaFold2 and performed molecular docking simulations with odorant compounds. Each odorant was represented as a 409-dimensional docking score vector, and odor similarity was inferred by comparing these vectors statistically. To evaluate the effectiveness of this approach, we used odorant molecules from the ATLAS database and tested whether molecules with similar docking profiles correspond to similar olfactory perceptions. Our results demonstrate that the proposed docking-based method enables the relative prediction of odor similarity between molecules, even for compounds not included in the reference database. This method offers a promising alternative to traditional QSAR-based approaches relying solely on molecular structural similarity, and provides a structure-based, receptor-level framework for computational olfaction.

摘要

人类气味识别背后的机制在很大程度上仍不明确,这使得仅根据新分子的分子结构来预测其气味具有挑战性。与味觉不同,味觉被分为有限的几类,而气味感知非常复杂且缺乏普遍定义的标签,这使得绝对的气味分类本质上具有模糊性。为了解决这个问题,我们提出了一个用于气味预测的相对评估框架,重点是气味相似性而非绝对描述符。在本研究中,我们使用AlphaFold2构建了约400个人类嗅觉受体(hORs)的三维结构,并与气味化合物进行分子对接模拟。每个气味剂都表示为一个409维的对接得分向量,通过对这些向量进行统计比较来推断气味相似性。为了评估这种方法的有效性,我们使用了ATLAS数据库中的气味剂分子,并测试了具有相似对接图谱的分子是否对应于相似的嗅觉感知。我们的结果表明,所提出的基于对接的方法能够对分子之间的气味相似性进行相对预测,即使对于参考数据库中未包含的化合物也是如此。这种方法为仅依赖分子结构相似性的传统基于定量构效关系(QSAR)的方法提供了一种有前景的替代方案,并为计算嗅觉提供了一个基于结构的、受体水平的框架。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e33/12423883/9f21ea2d084a/ao5c04324_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验