Suppr超能文献

一种用于理解嗅觉受体与气味剂相互作用的全计算机模拟方案。

A Fully In Silico Protocol to Understand Olfactory Receptor-Odorant Interactions.

作者信息

Berwal Bhavika, Saha Pinaki, Kumar Ritesh

机构信息

CSIR-Central Scientific Instruments Organisation, Chandigarh 160030, India.

University of Hertfordshire, Hatfield AL10 9AB, Hertfordshire, U.K.

出版信息

ACS Omega. 2025 Jun 3;10(23):24030-24049. doi: 10.1021/acsomega.4c08181. eCollection 2025 Jun 17.

Abstract

Understanding olfactory receptor (OR)-odorant interaction is crucial for unraveling the molecular intricacies of smell, a sense that is essential for health and survival and has potential therapeutic applications. Nevertheless, the absence of comprehensive experimental data concerning ORs has significantly impeded the understanding of the structural dimensions of olfaction, thereby necessitating innovative approaches to elucidate the structural intricacies of ORs. In this study, we developed an in silico protocol to predict OR structures and study relevant odorant interactions using the OR51E2-propionate complex as a reference. We also developed a hybrid homology modeling strategy leveraging homologous Alphafold structures. This approach resulted in structures with better stability than Alphafold predicted models, as validated through molecular dynamics simulations. Our pipeline accurately replicated experimental findings for OR51E2 and was extended to three homologous ORs: OR51E1, OR51D1, and OR51G2. We used a total of 217 molecules from the M2OR database and key food odorants and applied K-nearest neighbor clustering, selecting a total of 78 representative molecules based on their proximity to cluster centroids for molecular docking studies. Our computational pipeline successfully verified over 25 previously established odorant-OR relationships, including the identification of potential interactions between OR51G2 and molecules such as trans-2-nonenal and acetyl glutamic acid. This framework provides an efficient method for predicting and characterizing potential OR-odorant pairs, streamlining the discovery process prior to experimental confirmation and advancing our understanding of OR binding mechanisms.

摘要

理解嗅觉受体(OR)与气味分子的相互作用对于揭示嗅觉的分子复杂性至关重要,嗅觉是一种对健康和生存至关重要且具有潜在治疗应用价值的感觉。然而,缺乏关于ORs的全面实验数据严重阻碍了对嗅觉结构维度的理解,因此需要创新方法来阐明ORs的结构复杂性。在本研究中,我们开发了一种计算机模拟方案,以OR51E2-丙酸酯复合物为参考来预测OR结构并研究相关的气味分子相互作用。我们还开发了一种利用同源Alphafold结构的混合同源建模策略。通过分子动力学模拟验证,这种方法得到的结构比Alphafold预测模型具有更好的稳定性。我们的流程准确地复制了OR51E2的实验结果,并扩展到三个同源ORs:OR51E1、OR51D1和OR51G2。我们总共使用了来自M2OR数据库的217种分子和关键食品气味分子,并应用K近邻聚类,根据它们与聚类中心的接近程度总共选择了78种代表性分子用于分子对接研究。我们的计算流程成功验证了超过25种先前建立的气味分子-OR关系,包括鉴定OR51G2与反式-2-壬烯醛和乙酰谷氨酸等分子之间的潜在相互作用。这个框架为预测和表征潜在的OR-气味分子对提供了一种有效方法,简化了实验确认之前的发现过程,并推进了我们对OR结合机制的理解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c93b/12177607/834a4672c4c9/ao4c08181_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验