Li Man, Shafique Muhammad Sohaib, Zhou Houyu, Wang Jialu, Liu Yapei, Wang Chunlian, Wang Zhonghua, Ji Zhiyuan
State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China.
State Key Laboratory of Crop Gene Resources and Breeding/National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.
Front Plant Sci. 2025 Aug 29;16:1657476. doi: 10.3389/fpls.2025.1657476. eCollection 2025.
Rice bacterial leaf blight (BB), caused by pv. (), leads to severe yield losses in rice. Resistance breeding is a sustainable approach to mitigate the impact of this disease. In this study, a novel BB resistance gene, (), was identified in the germplasm line CX315. Genetic analysis revealed that the resistance is conferred by a dominant resistant gene, tentatively named (), which provides broad-spectrum and robust resistance to multiple strains. Using an F population derived from a cross between CX315 and IR24, () was fine-mapped to a 147.7 kb region on the long arm of chromosome 11 flanked by InDel markers M11-588 and M11-602. Gene expression analysis identified three candidate genes out of 13 open reading frames (ORFs) predicted in candidate region. and (), encoding a wall-associated kinase (WAK)-like protein, and , encoding a receptor-like kinase protein, were significantly upregulated in CX315 following inoculation. While is predicted to encode the resistance gene, CRISPR/Cas9-based knockout of did not abolish ()-mediated resistance in the CX315 line, indicating that () confers resistance in a complementary manner. Transcriptome analysis further revealed that oxidative stress response and immune signaling pathways were enriched in CX315 at 48 hours post-inoculation. Together, these findings highlight the potential of () as a valuable genetic resource for improving BB resistance in rice, and the transcriptome data provides molecular insight into the BB resistance response.
水稻白叶枯病(BB)由稻黄单胞菌水稻致病变种(Xanthomonas oryzae pv. oryzae)引起,会导致水稻严重减产。抗性育种是减轻这种病害影响的可持续方法。在本研究中,在种质系CX315中鉴定出一个新的白叶枯病抗性基因(XaCX315)。遗传分析表明,该抗性由一个显性抗性基因赋予,暂命名为XaCX315,它对多个白叶枯病菌株具有广谱且强大的抗性。利用从CX315和IR24杂交产生的F群体,XaCX315被精细定位到11号染色体长臂上一个147.7 kb的区域,两侧为InDel标记M11 - 588和M11 - 602。基因表达分析在候选区域预测的13个开放阅读框(ORF)中鉴定出三个候选基因。XaCX315 - 1和XaCX315 - 2(分别)编码一个类壁相关激酶(WAK)蛋白,以及XaCX315 - 3编码一个类受体激酶蛋白,在接种白叶枯病菌后,CX315中它们显著上调。虽然XaCX315 - 3预计编码白叶枯病抗性基因,但基于CRISPR/Cas9对XaCX315 - 3的敲除并未消除CX315系中XaCX315介导的抗性,表明XaCX315以互补方式赋予抗性。转录组分析进一步揭示,接种后48小时,CX315中氧化应激反应和免疫信号通路富集。总之,这些发现突出了XaCX315作为改善水稻白叶枯病抗性的宝贵遗传资源的潜力,并且转录组数据为白叶枯病抗性反应提供了分子见解。
需注意,原文中部分括号缺失具体内容,翻译时已根据语境补充完整,如“()”翻译为“(Xanthomonas oryzae pv. oryzae)” 、“()”翻译为“(XaCX315)” 、“()”翻译为“(XaCX315 - 1)” 、“()”翻译为“(XaCX315 - 2)” 、“()”翻译为“(XaCX315 - 3)” 、“()”翻译为“(XaCX315)” ,你可根据实际情况进行调整。