Suppr超能文献

MOSSNet:无人机图像中高粱穗的多尺度定向检测与计数

MOSSNet: multiscale and oriented sorghum spike detection and counting in UAV images.

作者信息

Zhao Jianqing, Jiao Zhiyin, Wang Jinping, Wang Zhifang, Guo Yongchao, Zhou Ying, Chen Shiyi, Wu Wenjie, Shi Yannan, Lv Peng

机构信息

Key Laboratory for Climate Risk and Urban-Rural Smart Governance, School of Geography, Jiangsu Second Normal University, Nanjing, China.

Institute of Millet Crops, Hebei Academy of Agriculture and Forestry Sciences, Hebei Branch of National Sorghum Improvement Center, Shijiazhuang, China.

出版信息

Front Plant Sci. 2025 Aug 28;16:1526142. doi: 10.3389/fpls.2025.1526142. eCollection 2025.

Abstract

BACKGROUND

Accurate sorghum spike detection is critical for monitoring growth conditions, accurately predicting yield, and ensuring food security. Deep learning models have improved the accuracy of spike detection thanks to advances in artificial intelligence. However, the dense distribution of sorghum spikes, variable sizes and complex background information in UAV images make detection and counting difficult.

METHODS

We propose a multiscale and oriented sorghum spike detection and counting model in UAV images (MOSSNet). The model creates a Deformable Convolution Spatial Attention (DCSA) module to improve the network's ability to capture small sorghum spike features. It also integrated Circular Smooth Labels (CSL) to effectively represent morphological features. The model also employs a Wise IoU-based localization loss function to improve network loss.

RESULTS

Results show that MOSSNet accurately counts sorghum spike under field conditions, achieving mAP of 90.3%. MOSSNet shows excellent performance in predicting spike orientation, with RMSEa and MAEa of 14.6 and 12.5 respectively, outperforming other directional detection algorithms. Compared to general object detection algorithms which output horizonal detection boxes, MOSSNet also demonstrates high efficiency in counting sorghum spikes, with RMSE and MAE values of 9.3 and 8.1, respectively.

DISCUSSION

Sorghum spikes have a slender morphology and their orientation angles tend to be highly variable in natural environments. MOSSNet 's ability has been proved to handle complex scenes with dense distribution, strong occlusion, and complicated background information. This highlights its robustness and generalizability, making it an effective tool for sorghum spike detection and counting. In the future, we plan to further explore the detection capabilities of MOSSNet at different stages of sorghum growth. This will involve implementing object model improvements tailored to each stage and developing a real-time workflow for accurate sorghum spike detection and counting.

摘要

背景

准确的高粱穗检测对于监测生长状况、准确预测产量和确保粮食安全至关重要。由于人工智能的进步,深度学习模型提高了穗检测的准确性。然而,无人机图像中高粱穗的密集分布、大小不一以及复杂的背景信息使得检测和计数变得困难。

方法

我们提出了一种用于无人机图像的多尺度定向高粱穗检测与计数模型(MOSSNet)。该模型创建了一个可变形卷积空间注意力(DCSA)模块,以提高网络捕捉小高粱穗特征的能力。它还集成了圆形平滑标签(CSL)来有效表示形态特征。该模型还采用了基于Wise IoU的定位损失函数来改善网络损失。

结果

结果表明,MOSSNet能够在田间条件下准确计数高粱穗,平均精度均值(mAP)达到90.3%。MOSSNet在预测穗方向方面表现出色,均方根误差(RMSEa)和平均绝对误差(MAEa)分别为14.6和12.5,优于其他方向检测算法。与输出水平检测框的一般目标检测算法相比,MOSSNet在高粱穗计数方面也表现出高效率,RMSE和MAE值分别为9.3和8.1。

讨论

高粱穗形态细长,在自然环境中其方向角往往变化很大。MOSSNet处理密集分布、强遮挡和复杂背景信息的复杂场景的能力已得到证明。这突出了其鲁棒性和通用性,使其成为高粱穗检测和计数的有效工具。未来,我们计划进一步探索MOSSNet在高粱生长不同阶段的检测能力。这将包括针对每个阶段实施对象模型改进,并开发用于准确高粱穗检测和计数的实时工作流程。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8166/12423423/25c1acda7570/fpls-16-1526142-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验