Suppr超能文献

联邦学习与差分隐私:用于生物医学图像数据分类的机器学习与深度学习

Federated learning and differential privacy: Machine learning and deep learning for biomedical image data classification.

作者信息

Wassan Sobia, Ying Han, Dongyan Hu, Fei Pan

机构信息

School of Equipment Engineering, Jiangsu Urban and Rural Construction Vocational College, Changzhou, China.

出版信息

Digit Health. 2025 Sep 11;11:20552076251358531. doi: 10.1177/20552076251358531. eCollection 2025 Jan-Dec.

Abstract

BACKGROUND

The integration of differential privacy and federated learning in healthcare is key for maintaining patient confidentiality while ensuring accurate predictive modeling. With increasing concerns about privacy, it is essential to explore methods that protect data privacy without compromising model performance.

OBJECTIVE

This study evaluates the effectiveness of feedforward neural networks (FNNs), Gaussian processes (GPs), and a subset of deep learning neural networks (MLP) in classifying biomedical image data, incorporating federated learning to enhance privacy preservation.

METHOD

We implemented FNN, GP, and MLP models using federated learning and differential privacy techniques. Models were evaluated based on training and validation accuracy, correlation coefficients, mean absolute error (MAE), root mean squared error (RMSE), and relative errors, including relative absolute error (RAE) and relative root squared error (RRSE).

RESULTS

The FNN achieved 86.49% training accuracy and 82.08% overall accuracy but showed potential overfitting with 68.75% validation accuracy. The GP model had a correlation coefficient of 0.9741, a MAE of 108.38, and a RMSE of 173.49. The DNN outperformed the other models with a correlation coefficient of 0.9980, a MAE of 36.80, and a RMSE of 51.01. Federated learning improved privacy while maintaining model performance.

CONCLUSION

Federated learning with differential privacy offers a promising solution for secure and accurate biomedical image classification, supporting privacy-preserving machine learning in medical diagnostics without compromising performance.

摘要

背景

在医疗保健领域将差分隐私与联邦学习相结合,是在确保准确预测建模的同时维护患者隐私的关键。随着对隐私问题的日益关注,探索在不影响模型性能的情况下保护数据隐私的方法至关重要。

目的

本研究评估前馈神经网络(FNN)、高斯过程(GP)和深度学习神经网络子集(MLP)在对生物医学图像数据进行分类时的有效性,并纳入联邦学习以增强隐私保护。

方法

我们使用联邦学习和差分隐私技术实现了FNN、GP和MLP模型。基于训练和验证准确率、相关系数、平均绝对误差(MAE)、均方根误差(RMSE)以及相对误差(包括相对绝对误差(RAE)和相对均方根误差(RRSE))对模型进行评估。

结果

FNN的训练准确率达到86.49%,总体准确率为82.08%,但验证准确率为68.75%,显示出潜在的过拟合。GP模型的相关系数为0.9741,MAE为108.38,RMSE为173.49。深度神经网络(DNN)的相关系数为0.9980,MAE为36.80,RMSE为51.01,优于其他模型。联邦学习在保持模型性能的同时提高了隐私性。

结论

结合差分隐私的联邦学习为安全准确的生物医学图像分类提供了一个有前景的解决方案,支持在医疗诊断中进行隐私保护的机器学习,而不影响性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d6b3/12426403/58b9c1f37d73/10.1177_20552076251358531-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验