Suppr超能文献

人工智能驱动的急性胸主动脉夹层诊断:整合影像学、生物标志物和临床工作流程——一篇叙述性综述

Artificial intelligence-driven diagnosis of acute thoracic aortic dissection: integrating imaging, biomarkers, and clinical workflows-a narrative review.

作者信息

Lo Eunice Man Ki, Chen Sisi, Wong Randolph Hung Leung

机构信息

Division of Cardiothoracic Surgery, Department of Surgery, The Chinese University of Hong Kong, Hong Kong, China.

出版信息

Ann Transl Med. 2025 Aug 31;13(4):45. doi: 10.21037/atm-25-82. Epub 2025 Aug 25.

Abstract

BACKGROUND AND OBJECTIVE

Patients presenting to the emergency department with acute thoracic aortic dissection (ATAD) often experience chest pain that requires urgent intervention. However, other chest pain-related emergencies, such as acute coronary syndrome (ACS) and acute pulmonary embolism (PE), are far more common and frequently overshadow ATAD. This disparity leads to a high rate of ATAD misdiagnosis. Recent advancements in artificial intelligence (AI) have led to the development of various models utilizing imaging modalities and biomarkers to enable rapid triage and diagnosis of ATAD in emergency settings. This article aims to evaluate the performance and clinical significance of these AI models within the context of clinical workflows.

METHODS

We performed literature searches in PubMed, Scopus, and Web of Science to identify relevant studies published between 2015 and 2025, with the focus of the differentiation of ATAD patients from other chest pain-related conditions in emergency settings, with the application of AI.

KEY CONTENT AND FINDINGS

Eighteen studies were retrieved from the past ten years, highlighting a significant knowledge gap in the field of translational medicine. The discussion included an overview of AI-powered models for ATAD diagnosis, as well as guidelines on current clinical workflows and the application of AI in clinical settings.

CONCLUSIONS

This article offers a detailed review of AI models developed for the screening and diagnosis of ATAD. It highlights not only the performance of these technologies but also their clinical importance in facilitating timely interventions for high-risk patients. Looking forward, we anticipate a future where AI and deep learning (DL)-driven ATAD diagnostic models will play a pivotal role in optimizing ATAD clinical management.

摘要

背景与目的

因急性胸主动脉夹层(ATAD)就诊于急诊科的患者常经历需要紧急干预的胸痛。然而,其他与胸痛相关的急症,如急性冠状动脉综合征(ACS)和急性肺栓塞(PE),更为常见,且常常掩盖了ATAD。这种差异导致ATAD误诊率很高。人工智能(AI)的最新进展促使开发了各种利用成像模式和生物标志物的模型,以便在急诊环境中快速对ATAD进行分诊和诊断。本文旨在评估这些AI模型在临床工作流程中的性能和临床意义。

方法

我们在PubMed、Scopus和Web of Science中进行文献检索,以识别2015年至2025年间发表的相关研究,重点是在急诊环境中应用AI将ATAD患者与其他胸痛相关疾病进行区分。

关键内容与发现

从过去十年中检索到18项研究,凸显了转化医学领域存在重大知识空白。讨论内容包括用于ATAD诊断的AI驱动模型概述,以及当前临床工作流程和AI在临床环境中的应用指南。

结论

本文对为ATAD筛查和诊断而开发的AI模型进行了详细综述。它不仅突出了这些技术的性能,还强调了它们在促进对高危患者进行及时干预方面的临床重要性。展望未来,我们预计AI和深度学习(DL)驱动的ATAD诊断模型将在优化ATAD临床管理中发挥关键作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验