Nguyen Bryan B, Lowe Neona M, Kellogg Sophia, Huang Kuan-Wei, O'Toole Hannah, Hale Elizabeth J, Shirure Venktesh S, Shergill Bhupinder S, George Steven C, Carney Randy P
Department of Biomedical Engineering, University of California, Davis, Davis, USA.
bioRxiv. 2025 Sep 3:2025.08.28.672885. doi: 10.1101/2025.08.28.672885.
Although the blood-brain barrier (BBB) restricts passage of most molecules, various naturally occurring and synthetic nanoparticles are nonetheless found within the brain parenchyma. To study the mechanisms underlying this phenomenon, we developed a microfluidic BBB model (mBBB) using human cerebral microvascular endothelial cells (HCMECs) in direct contact with primary human astrocytes and pericytes within a physiologically relevant extracellular matrix. The horizontal architecture enables high-resolution imaging across the full barrier interface and allows direct assessment of nanoparticle transport and accumulation. This platform recapitulates key features of the BBB, including selective permeability, junctional protein expression, and receptor-mediated uptake pathways. Using this system, the trafficking and accumulation of structurally distinct nanoparticles, including liposomes, nanoplastics, and extracellular vesicles (EVs), were compared. Among these, heterologous EVs exhibit the highest transport efficiency. Analysis of nanoparticle properties suggest that ligand presentation and membrane composition, rather than size or stiffness, primarily govern BBB penetration. The mBBB platform provides a high-throughput, imaging-based framework to systematically interrogate nanoparticle trafficking across the BBB and offers a translational tool for both drug delivery and neurotoxicity screening.
尽管血脑屏障(BBB)限制了大多数分子的通过,但在脑实质中仍发现了各种天然存在的和合成的纳米颗粒。为了研究这一现象背后的机制,我们开发了一种微流控血脑屏障模型(mBBB),该模型使用人脑血管内皮细胞(HCMECs)与原代人星形胶质细胞和周细胞在生理相关的细胞外基质中直接接触。这种水平结构能够对整个屏障界面进行高分辨率成像,并允许直接评估纳米颗粒的运输和积累。该平台概括了血脑屏障的关键特征,包括选择性通透性、连接蛋白表达和受体介导的摄取途径。使用该系统,比较了结构不同的纳米颗粒的运输和积累情况,包括脂质体、纳米塑料和细胞外囊泡(EVs)。其中,异源EVs表现出最高的运输效率。对纳米颗粒特性的分析表明,配体呈现和膜组成而非大小或硬度主要决定了血脑屏障的穿透性。mBBB平台提供了一个基于成像的高通量框架,用于系统地研究纳米颗粒跨血脑屏障的运输,并为药物递送和神经毒性筛选提供了一个转化工具。