Alawadhi Sami, Rutkowski David M, Tagay Yerbol, Cartagena-Rivera Alexander X, Zhovmer Alexander S, Tsygankov Denis, Vavylonis Dimitrios, Tabdanov Erdem D
Department of Physics, Lehigh University, PA, USA.
Department of Cell and Biological Systems, Penn State College of Medicine, The Pennsylvania State University, Hershey, PA, USA.
bioRxiv. 2025 Sep 6:2025.09.02.673867. doi: 10.1101/2025.09.02.673867.
The nucleus and uropod are the largest and most mechanically distinct structures in migrating amoeboid lymphocytes, including NK, B, and T cells. The biophysical properties of these structures may shape the ability of immune cells to navigate dense tissue microenvironments during immune surveillance. Using bead-spring and agent-based cell models, we explore the biomechanical contributions of the nucleus, uropod, septin-templated cortical rings, actomyosin cytoskeleton, and extracellular matrix obstacles to lymphocyte migration. Our results support a migration model in which, following cell-matrix collisions, septins mediate the formation of cortical rings that hydraulically seal cytoplasmic compartments on each side of the passing nucleus, generating a pressure difference that propels the nucleus forward. This hydraulically driven nuclear piston actively enhances migration through confined spaces. Concurrently, the uropod emerging from the peristaltic collapse of rear compartments stabilizes directional persistence and prevents T cell repolarization. We show that such polarity stabilization boosts immune surveillance efficiency. Together, these models redefine the nucleus as an active component of the migratory engine and the uropod as a locomotion stabilizer. Furthermore, the models offer a predictive framework towards engineering of immune cell motility in complex tissue microenvironments with broad implications for cancer immunotherapy, aging, and regenerative medicine.
细胞核和尾足是迁移的阿米巴样淋巴细胞(包括自然杀伤细胞、B细胞和T细胞)中最大且机械特性最明显的结构。这些结构的生物物理特性可能会影响免疫细胞在免疫监视过程中在致密组织微环境中导航的能力。利用珠簧模型和基于智能体的细胞模型,我们探究了细胞核、尾足、septin模板化皮质环、肌动球蛋白细胞骨架和细胞外基质障碍物对淋巴细胞迁移的生物力学贡献。我们的结果支持一种迁移模型,即在细胞与基质碰撞后,septin介导皮质环的形成,这些皮质环通过液压密封穿过细胞核两侧的细胞质区室,产生推动细胞核向前的压力差。这种液压驱动的核活塞积极增强了通过狭窄空间的迁移。同时,从后区室蠕动性塌陷中出现的尾足稳定了方向持续性并防止T细胞重新极化。我们表明,这种极性稳定提高了免疫监视效率。总之,这些模型将细胞核重新定义为迁移引擎的一个活跃组成部分,将尾足重新定义为运动稳定器。此外,这些模型为在复杂组织微环境中设计免疫细胞运动性提供了一个预测框架,对癌症免疫治疗、衰老和再生医学具有广泛的意义。