Suppr超能文献

压缩依赖型微管强化使细胞能够在受限环境中导航。

Compression-dependent microtubule reinforcement enables cells to navigate confined environments.

机构信息

Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, Queensland, Australia.

Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia.

出版信息

Nat Cell Biol. 2024 Sep;26(9):1520-1534. doi: 10.1038/s41556-024-01476-x. Epub 2024 Aug 19.

Abstract

Cells migrating through complex three-dimensional environments experience considerable physical challenges, including tensile stress and compression. To move, cells need to resist these forces while also squeezing the large nucleus through confined spaces. This requires highly coordinated cortical contractility. Microtubules can both resist compressive forces and sequester key actomyosin regulators to ensure appropriate activation of contractile forces. Yet, how these two roles are integrated to achieve nuclear transmigration in three dimensions is largely unknown. Here, we demonstrate that compression triggers reinforcement of a dedicated microtubule structure at the rear of the nucleus by the mechanoresponsive recruitment of cytoplasmic linker-associated proteins, which dynamically strengthens and repairs the lattice. These reinforced microtubules form the mechanostat: an adaptive feedback mechanism that allows the cell to both withstand compressive force and spatiotemporally organize contractility signalling pathways. The microtubule mechanostat facilitates nuclear positioning and coordinates force production to enable the cell to pass through constrictions. Disruption of the mechanostat imbalances cortical contractility, stalling migration and ultimately resulting in catastrophic cell rupture. Our findings reveal a role for microtubules as cellular sensors that detect and respond to compressive forces, enabling movement and ensuring survival in mechanically demanding environments.

摘要

细胞在复杂的三维环境中迁移时会经历相当大的物理挑战,包括张力和压缩。为了移动,细胞需要抵抗这些力,同时将大核通过狭窄的空间挤压。这需要高度协调的皮质收缩性。微管既能抵抗压缩力,又能隔离关键的肌动球蛋白调节剂,以确保收缩力的适当激活。然而,这两个角色如何整合以实现三维核转位在很大程度上是未知的。在这里,我们证明压缩触发了细胞质连接蛋白相关蛋白的机械响应性募集,从而在核的后部增强了专门的微管结构,这种募集动态地增强和修复晶格。这些强化的微管形成了机械稳定器:一种自适应反馈机制,使细胞既能承受压缩力,又能在时空上组织收缩性信号通路。微管机械稳定器有助于核定位并协调力的产生,使细胞能够通过狭窄部位。机械稳定器的破坏会使皮质收缩性失去平衡,使迁移停滞,并最终导致灾难性的细胞破裂。我们的发现揭示了微管作为细胞传感器的作用,它们可以检测和响应压缩力,从而使细胞能够在机械要求高的环境中移动并存活。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验