Kyriakidis Nikolaos C, Echeverría Carolina E, Bautista Jhommara, Rivera-Orellana Sebastián, Ramos-Medina María José, Salazar-Santoliva Camila, Izquierdo-Condoy Juan S, Ortiz-Prado Esteban, Guerrero Santiago, López-Cortés Andrés
Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institute, Stockholm, Sweden.
Department of Medicine, New York University Grossman School of Medicine, New York, NY, United States.
Front Cell Dev Biol. 2025 Aug 28;13:1652047. doi: 10.3389/fcell.2025.1652047. eCollection 2025.
Cancer immunotherapy has fundamentally reshaped oncology by harnessing the immune system to eliminate malignant cells. Immune checkpoint inhibitors targeting CTLA-4 and PD-1/PD-L1 have achieved durable remissions in select cancers, yet most patients exhibit resistance due to tumor heterogeneity, immunometabolic rewiring, and the immunosuppressive tumor microenvironment. To address these limitations, next-generation immunotherapies have emerged, targeting multiple layers of immune regulation. These include co-inhibitory and co-stimulatory checkpoint modulators, bispecific antibodies, adoptive cell therapies, cancer vaccines, oncolytic viruses, cytokine-based strategies, and synthetic immunomodulators that activate innate sensors. Nanotechnology and immune engineering further enhance specificity, reduce toxicity, and broaden applicability. Combination immunotherapy has become central to overcoming resistance, with rational regimens integrating ICIs, cytokines, vaccines, and targeted agents. Biomarker-guided strategies, leveraging tumor mutational burden, immune cell infiltration, and multi-omic profiling, are enabling personalized approaches. However, immune-related adverse events and variability in therapeutic responses necessitate predictive biomarkers and improved patient stratification. Emerging frontiers include microbiome-targeted interventions, chronotherapy, and AI-driven modeling of tumor-immune dynamics. Equally critical is ensuring global equity through inclusive trial design, diverse biomarker validation, and expanded access to cutting-edge therapies. This review provides a comprehensive analysis of multimodal immunotherapeutic strategies, their mechanistic basis, and clinical integration. By unifying innovation in immunology, synthetic biology, and systems medicine, next-generation cancer immunotherapy is poised to transition from a transformative intervention to a curative paradigm across malignancies.
癌症免疫疗法通过利用免疫系统来消除恶性细胞,从根本上重塑了肿瘤学。靶向CTLA-4和PD-1/PD-L1的免疫检查点抑制剂在某些癌症中已实现持久缓解,但由于肿瘤异质性、免疫代谢重塑和免疫抑制性肿瘤微环境,大多数患者表现出耐药性。为解决这些局限性,已出现了针对免疫调节多个层面的新一代免疫疗法。这些疗法包括共抑制和共刺激检查点调节剂、双特异性抗体、过继性细胞疗法、癌症疫苗、溶瘤病毒、基于细胞因子的策略以及激活先天性传感器的合成免疫调节剂。纳米技术和免疫工程进一步提高了特异性、降低了毒性并拓宽了适用性。联合免疫疗法已成为克服耐药性的核心,合理的方案整合了免疫检查点抑制剂、细胞因子、疫苗和靶向药物。生物标志物引导的策略利用肿瘤突变负荷、免疫细胞浸润和多组学分析,实现个性化治疗方法。然而,免疫相关不良事件和治疗反应的变异性需要预测性生物标志物和改进的患者分层。新兴领域包括针对微生物群的干预、时间疗法以及人工智能驱动的肿瘤-免疫动力学建模。同样重要的是,通过包容性试验设计、多样的生物标志物验证以及扩大对前沿疗法的获取来确保全球公平性。本综述对多模式免疫治疗策略、其机制基础和临床整合进行了全面分析。通过整合免疫学、合成生物学和系统医学的创新,新一代癌症免疫疗法有望从一种变革性干预转变为一种针对各种恶性肿瘤的治愈性模式。