Suppr超能文献

鉴定与二硫化物依赖性细胞程序性坏死相关的长链非编码RNA特征以预测急性髓系白血病的预后、免疫治疗和化疗选择

Identification of disulfidptosis-related long non-coding RNA signature to predict the prognosis, immunotherapy, and chemotherapy options in acute myeloid leukemia.

作者信息

Huang Minglei, Zhang Longze, Liu Ye, Wang Shuangmin, Jin Sikan, He Zhixu, Wang Xianyao

机构信息

Department of Immunology, Zunyi Medical University, Zunyi, China.

Scientific Research Center, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), Zunyi, China.

出版信息

Transl Cancer Res. 2025 Aug 31;14(8):4491-4506. doi: 10.21037/tcr-2025-441. Epub 2025 Aug 12.

Abstract

BACKGROUND

Disulfidptosis, a recently identified programmed cell death mechanism, has emerged as a critical regulator in tumorigenesis and demonstrates significant prognostic value across multiple cancer types. However, the prognostic significance of disulfidptosis-related long non-coding RNAs (DRLs) in acute myeloid leukemia (AML) and their functional implications in the tumor immune microenvironment (TIME) remain poorly characterized. Furthermore, the expression patterns and regulatory mechanisms of DRLs in AML require systematic investigation to elucidate their potential clinical applications. The study aims to investigate the prognostic and immunotherapeutic implications of DRLs in AML.

METHODS

RNA sequencing and clinical data for AML samples, as well as genotype-tissue expression (GTEx) normal bone marrow samples, were sourced from the University of California Santa Cruz (UCSC) database. Initially, DRLs were identified using Pearson correlation analysis. Subsequently, univariate Cox proportional hazards regression analysis was employed to identify long non-coding RNAs (lncRNAs) associated with prognosis. Key prognostic biomarkers were then selected through least absolute shrinkage and selection operator (LASSO) regression, stepwise Cox regression (StepCox), CoxBoost, and random survival forest (RSF) methods. A prognostic model was developed utilizing multivariate Cox regression analysis, and correlations between DRL risk scores, the AML immune microenvironment, and therapeutic agents were predicted. Furthermore, the expression levels of these DRLs in AML cell lines were validated by quantitative reverse transcription-polymerase chain reaction (RT-PCR).

RESULTS

We identified eight pivotal DRLs and developed a DRLs-based risk model (DRLs-RM). Patients classified in the low-risk cohort exhibited prolonged survival compared to those in the high-risk cohort. Multivariate Cox proportional hazards analysis demonstrated that DRL risk scores function as an independent prognostic biomarker for AML. Enrichment analysis revealed that DRL risk scores correlate with apoptotic pathways and NADPH oxidoreductase activity. Furthermore, DRL risk scores showed significant associations with the AML immune microenvironment, including elevated expression of various immune checkpoint molecules and human leukocyte antigen (HLA) genes in the high-risk group. Drug sensitivity profiling indicated that high-risk patients exhibit increased sensitivity to agents such as axitinib and cyclin-dependent kinase 9 (CDK9) inhibitors.

CONCLUSIONS

The prognostic model incorporating eight DRLs demonstrates high accuracy and reliability in predicting survival outcomes for AML patients, thereby identifying potential therapeutic targets for future AML treatment strategies.

摘要

背景

二硫化物诱导的细胞焦亡是一种最近发现的程序性细胞死亡机制,已成为肿瘤发生的关键调节因子,并在多种癌症类型中显示出显著的预后价值。然而,二硫化物诱导的细胞焦亡相关长链非编码RNA(DRL)在急性髓系白血病(AML)中的预后意义及其在肿瘤免疫微环境(TIME)中的功能影响仍未得到充分表征。此外,AML中DRL的表达模式和调控机制需要系统研究以阐明其潜在的临床应用。本研究旨在探讨DRL在AML中的预后及免疫治疗意义。

方法

AML样本的RNA测序和临床数据以及基因型-组织表达(GTEx)正常骨髓样本均来自加利福尼亚大学圣克鲁兹分校(UCSC)数据库。首先,使用Pearson相关分析鉴定DRL。随后,采用单变量Cox比例风险回归分析来鉴定与预后相关的长链非编码RNA(lncRNA)。然后通过最小绝对收缩和选择算子(LASSO)回归、逐步Cox回归(StepCox)、CoxBoost和随机生存森林(RSF)方法选择关键的预后生物标志物。利用多变量Cox回归分析建立预后模型,并预测DRL风险评分、AML免疫微环境和治疗药物之间的相关性。此外,通过定量逆转录-聚合酶链反应(RT-PCR)验证这些DRL在AML细胞系中的表达水平。

结果

我们鉴定出8个关键的DRL,并建立了基于DRL的风险模型(DRLs-RM)。与高风险队列中的患者相比,低风险队列中的患者生存期延长。多变量Cox比例风险分析表明,DRL风险评分是AML的独立预后生物标志物。富集分析显示,DRL风险评分与凋亡途径和NADPH氧化还原酶活性相关。此外,DRL风险评分与AML免疫微环境显著相关,包括高风险组中各种免疫检查点分子和人类白细胞抗原(HLA)基因的表达升高。药物敏感性分析表明,高风险患者对阿西替尼和细胞周期蛋白依赖性激酶9(CDK9)抑制剂等药物的敏感性增加。

结论

包含8个DRL的预后模型在预测AML患者生存结局方面显示出高准确性和可靠性,从而为未来AML治疗策略确定了潜在的治疗靶点。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验