Suppr超能文献

利用监测、流行病学和最终结果(SEER)数据库以及来自中国某单一中心的数据,基于机器学习对浆液性卵巢癌进行预后预测。

Machine learning-based prognosis prediction for serous ovarian cancer using the SEER database and data from a single center in China.

作者信息

Chen Huan, Zhao Yuexing, Sun Qian, Jiao Pei

机构信息

Department of Obstetrics and Gynecology, Yancheng Dafeng People's Hospital, Yancheng, China.

Department of Nursing, Yancheng Dafeng People's Hospital, Yancheng, China.

出版信息

Transl Cancer Res. 2025 Aug 31;14(8):4703-4719. doi: 10.21037/tcr-2025-540. Epub 2025 Aug 14.

Abstract

BACKGROUND

Ovarian cancer, particularly serous ovarian cancer, is the leading cause of death among gynecological malignancies. Despite advances in treatment, prognosis remains poor due to the tumor's heterogeneity and the frequent late-stage diagnosis, making survival a critical concern for patients. However, there is a lack of accurate clinical prognostic models to guide treatment decisions. Therefore, this study aimed to develop and validate a robust prognostic model for serous ovarian cancer using machine learning.

METHODS

Data for this study were obtained from the Surveillance, Epidemiology, and End Results (SEER) database (2010-2021) and Yancheng Dafeng People's Hospital (2012-2020). We used univariate and multivariate Cox regression analyses to identify independent risk factors and constructed a Light Gradient Boosting Machine (LightGBM) model with 10-fold cross-validation and hyperparameter tuning. The model's performance was evaluated using area under the receiver operating characteristic curve (ROC-AUC), feature importance rankings, and confusion matrices.

RESULTS

A total of 7,916 cases from the SEER database and 163 cases from Yancheng Dafeng People's Hospital were included in the analysis. The LightGBM model outperformed other machine learning models, with ROC-AUC values of 0.902 [95% confidence interval (CI): 0.881-0.923], 0.863 (95% CI: 0.841-0.886), 0.814 (95% CI: 0.794-0.835), and 0.816 (95% CI: 0.796-0.835) at 6, 12, 24, and 36 months, respectively, in the test set. Additionally, the model maintained robust performance in external validation, with ROC-AUC values of 0.821 (95% CI: 0.718-0.923), 0.785 (95% CI: 0.698-0.871), 0.745 (95% CI: 0.669-0.821), and 0.790 (95% CI: 0.722-0.858) at 6, 12, 24, and 36 months, respectively. We also identified surgery as the most significant predictor of survival, followed by chemotherapy, in ovarian cancer patients.

CONCLUSIONS

We utilized the LightGBM model to predict survival in ovarian cancer patients, demonstrating excellent prognostic accuracy and high reproducibility. This model provides a valuable tool for guiding clinical decision-making and optimizing treatment strategies. Future research is needed to further validate its applicability across different populations.

摘要

背景

卵巢癌,尤其是浆液性卵巢癌,是妇科恶性肿瘤中导致死亡的主要原因。尽管治疗方面取得了进展,但由于肿瘤的异质性和频繁的晚期诊断,预后仍然很差,这使得生存成为患者的关键问题。然而,缺乏准确的临床预后模型来指导治疗决策。因此,本研究旨在使用机器学习开发并验证一种用于浆液性卵巢癌的强大预后模型。

方法

本研究的数据来自监测、流行病学和最终结果(SEER)数据库(2010 - 2021年)和盐城大丰人民医院(2012 - 2020年)。我们使用单变量和多变量Cox回归分析来识别独立危险因素,并构建了具有10折交叉验证和超参数调整的轻梯度提升机(LightGBM)模型。使用受试者操作特征曲线下面积(ROC - AUC)、特征重要性排名和混淆矩阵来评估模型的性能。

结果

分析纳入了SEER数据库中的7916例病例和盐城大丰人民医院的163例病例。LightGBM模型在测试集中6个月、12个月、24个月和36个月时的ROC - AUC值分别为0.902 [95%置信区间(CI):0.881 - 0.923]、0.863(95% CI:0.841 - 0.886)、0.814(95% CI:0.794 - 0.835)和0.816(95% CI:0.796 - 0.835),优于其他机器学习模型。此外,该模型在外部验证中保持了强大的性能,在6个月、12个月、24个月和36个月时的ROC - AUC值分别为0.821(95% CI:0.718 - 0.923)、0.785(95% CI:0.698 - 0.871)、0.745(95% CI:0.669 - 0.821)和0.790(95% CI:0.722 - 0.858)。我们还确定手术是卵巢癌患者生存的最重要预测因素,其次是化疗。

结论

我们利用LightGBM模型预测卵巢癌患者的生存情况,显示出优异的预后准确性和高重现性。该模型为指导临床决策和优化治疗策略提供了有价值的工具。未来需要进一步研究以验证其在不同人群中的适用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ad51/12432648/4997a0923f84/tcr-14-08-4703-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验