Suppr超能文献

用于科学发现的人工智能、智能模型与实验室自动化——科学人工智能的开端。

AI, agentic models and lab automation for scientific discovery - the beginning of scAInce.

作者信息

Hartung Thomas

机构信息

Doerenkamp-Zbinden-Chair for Evidence-Based Toxicology, Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health and Whiting School of Engineering, Baltimore, MD, United States.

Department of Biology, University of Konstanz, Konstanz, Germany.

出版信息

Front Artif Intell. 2025 Aug 29;8:1649155. doi: 10.3389/frai.2025.1649155. eCollection 2025.

Abstract

Until recently, the conversation about generative artificial intelligence in science revolved around the textual prowess of large language models such as GPT-3.5 and the promise that they might one day draft a decent literature review. Since then, progress has been nothing short of breathtaking. We now find ourselves in the era of multimodal, systems that listen, see, speak and act, orchestrating cloud software and physical laboratory hardware with a fluency that would have sounded speculative in early 2023. In this review, I merge the substance of our 2024 white paper for the World Economic Forum Top-10-Technologies Report with the latest advances through mid-2025, charting a course from automated literature synthesis and hypothesis generation to self-driving laboratories, organoid intelligence and climate-scale forecasting. The discussion is grounded in emerging governance regimes-notably the European Union Artificial Intelligence Act and ISO 42001-and is written from the dual vantage-point of a toxicologist who has spent a career championing robust, humane science and of a field chief editor charged with safeguarding scholarly standards in . I argue that research is entering a "co-pilot to lab-pilot" transition in which AI no longer merely interprets knowledge but increasingly . This shift promises dramatic efficiency gains yet simultaneously amplifies concerns about reproducibility, auditability, safety and equitable access.

摘要

直到最近,有关科学领域生成式人工智能的讨论还主要围绕GPT-3.5等大型语言模型的文本能力,以及它们未来某天或许能够撰写一篇像样的文献综述的前景。从那时起,进展可谓惊人。如今,我们已身处多模态时代,这些系统能够听、看、说、做,流畅地协调云软件和物理实验室硬件,而在2023年初,这听起来还只是一种推测。在这篇综述中,我将我们为世界经济论坛《十大技术报告》撰写的2024年白皮书的内容与截至2025年年中的最新进展相结合,描绘了一条从自动化文献合成与假设生成到自动驾驶实验室、类器官智能和气候尺度预测的发展路径。讨论基于新兴的治理机制——特别是欧盟《人工智能法案》和ISO 42001——并从一位毕生致力于倡导严谨、人道科学的毒理学家以及一位负责维护某领域学术标准的主编的双重视角展开。我认为,研究正在进入一个“副驾驶到实验室主导”的转变阶段,在这个阶段,人工智能不再仅仅是解读知识,而是越来越多地…… 这种转变有望带来显著的效率提升,但同时也加剧了人们对可重复性、可审计性、安全性和公平获取的担忧。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9c13/12426084/73be53815397/frai-08-1649155-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验