Shi Victoria, Wu Shengju, Lian Qianyuan, Shi Rubing, Liu Ze, Xu Tongtong, Deng Shiyu, Shao Xinfa, Beckmann Anja, Li Wanlu, Tang Yaohui, Meier Carola, Yang Guo-Yuan, Zhang Zhijun
Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.
Department of Anatomy and Cell Biology, Medical Faculty, Saarland University, Homburg/Saar, Germany.
CNS Neurosci Ther. 2025 Sep;31(9):e70597. doi: 10.1111/cns.70597.
Ischemic stroke remains a leading cause of long-term disability and mortality worldwide, with few effective treatment options. A key challenge in recovery is the brain's limited capacity to regenerate neurovascular structures after injury. To address this, we developed a dual-functionalized extracellular vesicle (EV) platform designed to enhance both targeting specificity and therapeutic efficacy for post-stroke repair.
Neural stem cell-derived EVs were bioengineered via bio-click chemistry to display RGD peptides, enabling selective binding to integrin αVβ3, which is upregulated on activated endothelial cells in ischemic regions. EVs were concurrently loaded with vascular endothelial growth factor (VEGF), a pro-angiogenic and neurogenic cytokine that also enhances αVβ3 expression-thus creating a synergistic positive feedback mechanism to amplify targeting and tissue repair.
Engineered EVs retained normal morphology and showed a 5.2-fold increase in endothelial uptake compared to naïve EVs (p < 0.01). In vitro, they significantly enhanced endothelial cell migration by 2.1-fold (p < 0.05). In a mouse model of transient middle cerebral artery occlusion (tMCAO), intravenously delivered dual-functionalized EVs preferentially accumulated in the ischemic hemisphere, reduced infarct volume by 52.4%, and improved motor coordination (rotarod latency) by 71.8% compared to PBS-treated controls (p < 0.05). Immunostaining revealed enhanced CD31+ microvessel density and increased Nestin+ neural stem and progenitor cell presence, indicating promotion of both angiogenesis and neurogenesis.
This study presents a dual-functionalized EV system that combines targeted delivery with therapeutic reinforcement through VEGF loading, offering a potent and synergistic approach for ischemic stroke repair. These findings support further translational development of engineered EVs for neurovascular regeneration.
缺血性中风仍然是全球长期残疾和死亡的主要原因,有效的治疗选择很少。恢复过程中的一个关键挑战是大脑在损伤后再生神经血管结构的能力有限。为了解决这一问题,我们开发了一种双功能化细胞外囊泡(EV)平台,旨在提高中风后修复的靶向特异性和治疗效果。
通过生物点击化学对神经干细胞衍生的EV进行生物工程改造,以展示RGD肽,使其能够选择性结合整合素αVβ3,整合素αVβ3在缺血区域的活化内皮细胞上上调。EV同时负载血管内皮生长因子(VEGF),这是一种促血管生成和神经生成的细胞因子,也能增强αVβ3的表达,从而形成一种协同正反馈机制,以放大靶向作用和组织修复。
工程化的EV保留了正常形态,与未处理的EV相比,内皮摄取增加了5.2倍(p<0.01)。在体外,它们显著增强了内皮细胞迁移2.1倍(p<0.05)。在短暂性大脑中动脉闭塞(tMCAO)小鼠模型中,与PBS处理的对照组相比,静脉注射双功能化的EV优先聚集在缺血半球,梗死体积减少了52.4%,运动协调性(转棒潜伏期)提高了71.8%(p<0.05)。免疫染色显示CD31+微血管密度增加,Nestin+神经干细胞和祖细胞数量增加,表明促进了血管生成和神经生成。
本研究提出了一种双功能化的EV系统,该系统通过负载VEGF将靶向递送与治疗增强相结合,为缺血性中风修复提供了一种有效且协同的方法。这些发现支持工程化EV在神经血管再生方面的进一步转化研究。