Suppr超能文献

隐性药品不良反应入院情况:一项队列研究,介绍一种用于识别药物相关住院病例的新型行政数据方法。

Implied ADR-Admissions: A Cohort Study Introducing a Novel Administrative Data Approach for Identifying Drug-Related Hospitalisations.

作者信息

Schechner Miriam, Rottenkolber Marietta, Weglage Clara, Brišnik Vita, Haerdtlein Annette, Guthrie Bruce, Jaehde Ulrich, Grill Eva, Dreischulte Tobias

机构信息

Institute of General Practice and Family Medicine, LMU University Hospital, LMU Munich, Nußbaumstr. 5, 80336 Munich, Germany.

Advanced Care Research Centre, Usher Institute, University of Edinburgh, Edinburgh, UK.

出版信息

Drug Saf. 2025 Sep 16. doi: 10.1007/s40264-025-01614-w.

Abstract

BACKGROUND

Adverse drug reactions (ADRs) are a key contributor to unplanned hospitalisations, particularly in patients with polypharmacy. Traditional detection methods, such as expert reviews or diagnostic coding, are limited in scalability and sensitivity.

OBJECTIVE

This study introduces and evaluates a novel scalable method, implied ADR-admissions, that links drug exposures to adverse events using administrative data to improve the detection of plausible drug-related hospitalisations.

METHODS

A retrospective cohort study was conducted using linked health data from 123,662 individuals aged ≥ 40 years with polypharmacy in two Scottish health boards. Implied ADR-admissions were defined as emergency hospitalisations with one of 15 adverse events plausibly linked to drug exposure (based on a structured consensus process) within the prior 90 days. Incidence was compared with three existing approaches: adverse event-admissions (regardless of drug exposure), explicit ADR-admissions (explicitly coded as ADRs) and preventable ADR-admissions (with prior medication error). Multivariate logistic regression was used to identify predictors of implied ADR-admissions.

RESULTS

Over 1 year, 2.6% experienced an implied ADR-admission, compared with 5.7% with adverse event-admissions, and 0.4% with explicit ADR-admissions. For gastrointestinal bleeding, the implied ADR-admission incidence was 20 times higher than the preventable ADR-admission incidence. Key predictors for implied ADR-admissions included prior hypokalaemia-related hospitalisation and use of potentially inappropriate medications.

CONCLUSIONS

The implied ADR-admission approach has improved specificity relative to broad adverse event definitions while enhancing sensitivity beyond methods that rely solely on explicit ADR codes or pre-specified medication errors. It offers a scalable automated tool for pharmacovigilance, though further validation is needed prior to routine use in medication safety monitoring.

摘要

背景

药物不良反应(ADR)是导致非计划性住院的关键因素,在使用多种药物的患者中尤为如此。传统的检测方法,如专家评审或诊断编码,在可扩展性和敏感性方面存在局限性。

目的

本研究介绍并评估一种新型的可扩展方法——隐含ADR住院,该方法利用管理数据将药物暴露与不良事件联系起来,以改进对可能与药物相关的住院情况的检测。

方法

采用回顾性队列研究,使用来自苏格兰两个卫生委员会的123662名年龄≥40岁且使用多种药物的个体的关联健康数据。隐含ADR住院被定义为在过去90天内因15种可能与药物暴露相关的不良事件之一(基于结构化共识过程)而进行的急诊住院。将发病率与三种现有方法进行比较:不良事件住院(无论是否有药物暴露)、明确ADR住院(明确编码为ADR)和可预防ADR住院(有先前用药错误)。使用多变量逻辑回归来确定隐含ADR住院的预测因素。

结果

在1年时间里,2.6%的人经历了隐含ADR住院,相比之下,不良事件住院的比例为5.7%,明确ADR住院的比例为0.4%。对于胃肠道出血,隐含ADR住院的发病率比可预防ADR住院的发病率高20倍。隐含ADR住院的关键预测因素包括先前与低钾血症相关的住院以及使用潜在不适当的药物。

结论

相对于宽泛的不良事件定义,隐含ADR住院方法提高了特异性,同时在敏感性方面超越了仅依赖明确ADR编码或预先指定用药错误的方法。它为药物警戒提供了一种可扩展的自动化工具,不过在常规用于药物安全监测之前还需要进一步验证。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验