Leal Jaime Andrés
From the Department of Orthopaedic Surgery, Hospital Universitario de La Samaritana, Bogotá, Colombia; Department of Medical Education, Universidad de la Sabana, Chía, Colombia; and Specialization in Artificial Intelligence, Pontificia Universidad Javeriana, Bogotá, Colombia.
J Am Acad Orthop Surg Glob Res Rev. 2025 Sep 10;9(9). doi: 10.5435/JAAOSGlobal-D-25-00174. eCollection 2025 Sep 1.
Artificial intelligence (AI) is redefining surgical education by enabling personalized, data-driven learning environments. In orthopaedic trauma surgery, a specialty defined by diagnostic complexity, time-sensitive decision making, and procedural precision, AI tools are uniquely positioned to enhance resident training. This narrative review explores the role of AI subfields-machine learning (machine learning), deep learning, computer vision, natural language processing, and generative AI-in orthopaedic education. Each technology supports distinct educational functions, from real-time performance tracking and image interpretation to examination simulation and feedback automation. We describe how machine learning and deep learning models can assess technical competence and predict skill progression, whereas computer vision and augmented reality technologies provide immersive simulation and motion analysis. Natural language processing enables documentation analysis and scenario-based teaching, and large language models like ChatGPT support interactive, case-based learning. Ethical concerns such as algorithmic bias, data governance, transparency, and cognitive over-reliance are also discussed. A systems-based framework is proposed to integrate these technologies into a closed-loop educational cycle, emphasizing adaptive learning and professional growth. AI is not a substitute for surgical mentorship, but a powerful amplifier of educational quality. Its thoughtful implementation can foster equity, efficiency, and innovation in orthopaedic trauma training-transforming how surgical competence is acquired, assessed, and advanced.
人工智能(AI)正在通过打造个性化、数据驱动的学习环境来重新定义外科教育。在骨科创伤手术这一以诊断复杂性、时间敏感型决策和手术精度为特点的专业领域,人工智能工具在提升住院医师培训方面具有独特优势。本叙述性综述探讨了人工智能子领域——机器学习、深度学习、计算机视觉、自然语言处理和生成式人工智能——在骨科教育中的作用。每种技术都支持不同的教育功能,从实时性能跟踪和图像解读到考试模拟和反馈自动化。我们描述了机器学习和深度学习模型如何评估技术能力并预测技能进展,而计算机视觉和增强现实技术则提供沉浸式模拟和动作分析。自然语言处理实现文档分析和基于场景的教学,像ChatGPT这样的大语言模型支持交互式、基于案例的学习。还讨论了算法偏差、数据治理、透明度和认知过度依赖等伦理问题。提出了一个基于系统的框架,将这些技术整合到一个闭环教育周期中,强调适应性学习和专业成长。人工智能不是外科指导的替代品,而是教育质量的强大放大器。其深思熟虑的实施可以促进骨科创伤培训的公平性、效率和创新——改变外科能力的获取、评估和提升方式。