Kuc R, Li H
Ultrason Imaging. 1985 Jul;7(3):244-51. doi: 10.1177/016173468500700304.
The center frequency of a narrowband, discrete-time random process, such as a reflected ultrasound signal, is estimated from the parameter values of a reduced, second-order autoregressive (AR) model. This approach is proposed as a fast estimator that performs better than the zero-crossing count estimate for determining the center-frequency location. The parameter values are obtained through a linear prediction analysis on the correlated random process, which in this case is identical to the maximum entropy method for spectral estimation. The frequency of the maximum of the second-order model spectrum is determined from these parameters and is used as the center-frequency estimate. This estimate can be computed very efficiently, requiring only the estimates of the first three terms of the process autocorrelation function. The bias and variance properties of this estimator are determined for a random process having a Gaussian-shaped spectrum and compared to those of the ideal FM frequency discriminator, zero-crossing count estimator and a correlation estimator. It is found that the variance values for the reduced-order AR model center-frequency estimator lie between those for the ideal FM frequency discriminator and the zero-crossing count estimator.
窄带离散时间随机过程(如反射超声信号)的中心频率是根据简化的二阶自回归(AR)模型的参数值来估计的。该方法被提议作为一种快速估计器,在确定中心频率位置方面比过零计数估计表现更好。参数值通过对相关随机过程进行线性预测分析获得,在这种情况下,这与用于谱估计的最大熵方法相同。二阶模型谱最大值的频率由这些参数确定,并用作中心频率估计。该估计可以非常有效地计算,只需要过程自相关函数的前三项估计值。针对具有高斯形状谱的随机过程确定了该估计器的偏差和方差特性,并与理想调频鉴频器、过零计数估计器和相关估计器的偏差和方差特性进行了比较。结果发现,降阶AR模型中心频率估计器的方差值介于理想调频鉴频器和过零计数估计器的方差值之间。