Suppr超能文献

活体大鼠肿瘤超声背向散射系数测量的跨成像平台比较。

Cross-imaging platform comparison of ultrasonic backscatter coefficient measurements of live rat tumors.

机构信息

Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, 405 N Mathews, Urbana, IL 61801, USA.

出版信息

J Ultrasound Med. 2010 Jul;29(7):1117-23. doi: 10.7863/jum.2010.29.7.1117.

Abstract

OBJECTIVE

To translate quantitative ultrasound (QUS) from the laboratory into the clinic, it is necessary to demonstrate that the measurements are platform independent. Because the backscatter coefficient (BSC) is the fundamental estimate from which additional QUS estimates are calculated, agreement between BSC results using different systems must be demonstrated. This study was an intercomparison of BSCs from in vivo spontaneous rat mammary tumors acquired by different groups using 3 clinical array systems and a single-element laboratory scanner system.

METHODS

Radio frequency data spanning the 1- to 14-MHz frequency range were acquired in 3 dimensions from all animals using each system. Each group processed their radio frequency data independently, and the resulting BSCs were compared. The rat tumors were diagnosed as either carcinoma or fibroadenoma.

RESULTS

Carcinoma BSC results exhibited small variations between the multiple slices acquired with each transducer, with similar slopes of BSC versus frequency for all systems. Somewhat larger variations were observed in fibroadenomas, although BSC variations between slices of the same tumor were of comparable magnitude to variations between transducers and systems. The root mean squared (RMS) errors between different transducers and imaging platforms were highly variable. The lowest RMS errors were observed for the fibroadenomas between 4 and 5 MHz, with an average RMS error of 4 x 10(-5) cm(-1)Sr(-1) and an average BSC value of 7.1 x 10(-4) cm(-1)Sr(-1), or approximately 5% error. The highest errors were observed for the carcinoma between 7 and 8 MHz, with an RMS error of 1.1 x 10(-1) cm(-1)Sr(-1) and an average BSC value of 3.5 x 10(-2) cm(-1)Sr(-1), or approximately 300% error.

CONCLUSIONS

This technical advance shows the potential for QUS technology to function with different imaging platforms.

摘要

目的

将定量超声(QUS)从实验室转化到临床,有必要证明测量结果是与平台无关的。因为背向散射系数(BSC)是从其中计算出其他 QUS 估计值的基本估计值,所以必须证明使用不同系统的 BSC 结果是一致的。本研究是使用 3 种临床阵列系统和 1 种单元素实验室扫描仪系统,对不同组从体内自发的大鼠乳腺肿瘤中获得的 BSCs 进行的相互比较。

方法

使用每个系统以 3 维方式从所有动物中获取跨越 1 至 14MHz 频率范围的射频数据。每个组独立处理他们的射频数据,并比较由此产生的 BSCs。这些大鼠肿瘤被诊断为癌或纤维腺瘤。

结果

癌的 BSC 结果在每个换能器获取的多个切片之间表现出较小的变化,所有系统的 BSC 与频率的斜率相似。在纤维腺瘤中观察到稍大的变化,尽管同一肿瘤的切片之间的 BSC 变化与换能器和系统之间的变化相当,但变化幅度相当。不同换能器和成像平台之间的均方根(RMS)误差变化很大。在 4 到 5MHz 之间,纤维腺瘤的 RMS 误差最低,平均 RMS 误差为 4×10(-5)cm(-1)Sr(-1),平均 BSC 值为 7.1×10(-4)cm(-1)Sr(-1),或约 5%的误差。在 7 到 8MHz 之间,癌的 RMS 误差最高,RMS 误差为 1.1×10(-1)cm(-1)Sr(-1),平均 BSC 值为 3.5×10(-2)cm(-1)Sr(-1),或约 300%的误差。

结论

这项技术进步表明 QUS 技术具有与不同成像平台一起使用的潜力。

相似文献

1
Cross-imaging platform comparison of ultrasonic backscatter coefficient measurements of live rat tumors.
J Ultrasound Med. 2010 Jul;29(7):1117-23. doi: 10.7863/jum.2010.29.7.1117.
2
Techniques and evaluation from a cross-platform imaging comparison of quantitative ultrasound parameters in an in vivo rodent fibroadenoma model.
IEEE Trans Ultrason Ferroelectr Freq Control. 2013 Jul;60(7):1386-400. doi: 10.1109/TUFFC.2013.2711.
5
Quantitative assessment of in vivo breast masses using ultrasound attenuation and backscatter.
Ultrason Imaging. 2013 Apr;35(2):146-61. doi: 10.1177/0161734613480281.
6
On the estimation of backscatter coefficients using single-element focused transducers.
J Acoust Soc Am. 2011 May;129(5):2903-11. doi: 10.1121/1.3557036.
7
Frequency dependence of attenuation and backscatter coefficient of ex vivo human lymphedema dermis.
J Med Ultrason (2001). 2020 Jan;47(1):25-34. doi: 10.1007/s10396-019-00973-z. Epub 2019 Sep 12.
8
Validation of differences in backscatter coefficients among four ultrasound scanners with different beamforming methods.
J Med Ultrason (2001). 2020 Jan;47(1):35-46. doi: 10.1007/s10396-019-00984-w. Epub 2019 Nov 3.
10
Estimation of Backscatter Coefficients Using an In Situ Calibration Source.
IEEE Trans Ultrason Ferroelectr Freq Control. 2020 Feb;67(2):308-317. doi: 10.1109/TUFFC.2019.2944305. Epub 2019 Sep 27.

引用本文的文献

2
A first-in-human study of quantitative ultrasound to assess transplant kidney fibrosis.
Nat Med. 2025 Mar;31(3):970-978. doi: 10.1038/s41591-024-03417-5. Epub 2025 Mar 3.
3
Calibrating Data Mismatches in Deep Learning-Based Quantitative Ultrasound Using Setting Transfer Functions.
IEEE Trans Ultrason Ferroelectr Freq Control. 2023 Jun;70(6):510-520. doi: 10.1109/TUFFC.2023.3263119. Epub 2023 May 25.
4
Ultrasound imaging, a stethoscope for body composition assessment.
Quant Imaging Med Surg. 2020 Aug;10(8):1699-1722. doi: 10.21037/qims-19-1048.
5
Optimization of Ultrasound Backscatter Spectroscopy to Assess Neurotoxic Effects of Anesthesia in the Newborn Non-human Primate Brain.
Ultrasound Med Biol. 2020 Aug;46(8):2044-2056. doi: 10.1016/j.ultrasmedbio.2020.04.004. Epub 2020 May 29.
6
Photoacoustic signal characterization of cancer treatment response: Correlation with changes in tumor oxygenation.
Photoacoustics. 2017 Mar 21;5:25-35. doi: 10.1016/j.pacs.2017.03.003. eCollection 2017 Mar.
7
Review of Quantitative Ultrasound: Envelope Statistics and Backscatter Coefficient Imaging and Contributions to Diagnostic Ultrasound.
IEEE Trans Ultrason Ferroelectr Freq Control. 2016 Feb;63(2):336-51. doi: 10.1109/TUFFC.2015.2513958. Epub 2016 Jan 8.
8
The mechanical role of the cervix in pregnancy.
J Biomech. 2015 Jun 25;48(9):1511-23. doi: 10.1016/j.jbiomech.2015.02.065. Epub 2015 Mar 11.
9
Techniques and evaluation from a cross-platform imaging comparison of quantitative ultrasound parameters in an in vivo rodent fibroadenoma model.
IEEE Trans Ultrason Ferroelectr Freq Control. 2013 Jul;60(7):1386-400. doi: 10.1109/TUFFC.2013.2711.
10
Effective scatterer diameter estimates for broad scatterer size distributions.
Ultrason Imaging. 2015 Jan;37(1):3-21. doi: 10.1177/0161734614534399. Epub 2014 May 14.

本文引用的文献

1
Hybrid spectral domain method for attenuation slope estimation.
Ultrasound Med Biol. 2008 Nov;34(11):1808-19. doi: 10.1016/j.ultrasmedbio.2008.04.011. Epub 2008 Jul 14.
2
Interlaboratory comparison of ultrasonic backscatter coefficient measurements from 2 to 9 MHz.
J Ultrasound Med. 2005 Sep;24(9):1235-50. doi: 10.7863/jum.2005.24.9.1235.
3
Ultrasound attenuation imaging using compound acquisition and processing.
Ultrason Imaging. 2003 Oct;25(4):245-61. doi: 10.1177/016173460302500403.
4
A test phantom for estimating changes in the effective frequency of an ultrasonic scanner.
J Ultrasound Med. 2002 Sep;21(9):937-45. doi: 10.7863/jum.2002.21.9.937.
6
Method of data reduction for accurate determination of acoustic backscatter coefficients.
J Acoust Soc Am. 1984 Sep;76(3):913-23. doi: 10.1121/1.391317.
7
Reduced-order autoregressive modeling for center-frequency estimation.
Ultrason Imaging. 1985 Jul;7(3):244-51. doi: 10.1177/016173468500700304.
9
Parametric ultrasound imaging from backscatter coefficient measurements: image formation and interpretation.
Ultrason Imaging. 1990 Oct;12(4):245-67. doi: 10.1177/016173469001200402.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验