Suppr超能文献

使用监督学习对动物物种保护状况进行准确的预测建模

Accurate Predictive Modeling of Conservation Status in Animal Species Using Supervised Learning.

作者信息

Aoki Anais, Sethuraman Arun

机构信息

Department of Biology San Diego State University San Diego California USA.

Western Ecological Research Center - San Diego Field Station US Geological Survey San Diego California USA.

出版信息

Ecol Evol. 2025 Sep 15;15(9):e72157. doi: 10.1002/ece3.72157. eCollection 2025 Sep.

Abstract

Conservation management to mitigate extinction of wildlife becomes more crucial than ever as global impacts due to anthropogenic activities and climate change continue to create devastation for species around the globe. The International Union of Conservation of Nature (IUCN) RedList does not currently utilize genetic information to assess species conservation status despite the availability of molecular data. Here we use over 7300 animal studies collated from the MacroPopGen database, and over 450 published articles from the public repository DataDryad, focused on conservation and population genetics, sampling across a variety of invertebrate and vertebrate taxa, and using IUCN classifications to predict species endangerment across and within animal taxa using machine learning. We test hypotheses and show significant ( < 0.05) (a) decreased genetic diversity, and (b) increased genetic differentiation in bird and fish taxa with increased degree of endangerment. Additionally, our models were able to accurately (overall accuracy of 93.16%) predict species threat levels classified by the IUCN using both measures of genetic diversity and differentiation with IUCN assessment criteria. We propose that future studies that assess conservation status of animal taxa utilize a combination of predictor variables, that include available genomic data, along with demographic, phenotypic, and census data.

摘要

随着人为活动和气候变化带来的全球影响持续对全球物种造成破坏,野生动物保护管理以减轻物种灭绝变得比以往任何时候都更加关键。尽管有分子数据可用,但国际自然保护联盟(IUCN)红色名录目前并未利用遗传信息来评估物种的保护状况。在此,我们使用了从MacroPopGen数据库整理的7300多项动物研究,以及来自公共知识库DataDryad的450多篇已发表文章,这些研究聚焦于保护和种群遗传学,涵盖了各种无脊椎动物和脊椎动物类群,并利用机器学习,根据IUCN分类来预测动物类群之间以及类群内部的物种濒危情况。我们检验了假设,并发现(<0.05)(a)随着濒危程度增加,鸟类和鱼类类群的遗传多样性降低,以及(b)遗传分化增加。此外,我们的模型能够使用遗传多样性和分化的度量以及IUCN评估标准,准确地(总体准确率为93.16%)预测IUCN分类的物种威胁水平。我们建议,未来评估动物类群保护状况的研究应使用多种预测变量的组合,这些变量包括可用的基因组数据以及人口统计学、表型和普查数据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5363/12434340/5808b45115c7/ECE3-15-e72157-g002.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验