Suppr超能文献

拉曼光谱结合化学计量学在羽衣甘蓝中代森锰锌残留量检测与定量分析中的应用

Application of Raman Spectroscopy Coupled With Chemometrics for the Detection and Quantification of Mancozeb Residues in Collard Green.

作者信息

Kanai Saaya Abel, Ombati Wilson, Ndegwa Robinson, Gwaro Jared Ombiro

机构信息

Mathematics and Physical Sciences Maasai Mara University Narok Kenya.

Department of Metrology Kenya Bureau of Standards Nairobi Kenya.

出版信息

Anal Sci Adv. 2025 Sep 14;6(2):e70045. doi: 10.1002/ansa.70045. eCollection 2025 Dec.

Abstract

The presence of pesticide residues in food crops poses serious health concerns, necessitating precise, rapid and accessible detection techniques. This study investigates the use of Raman spectroscopy combined with advanced data analysis techniques to detect and quantify Mancozeb residues in collard greens. The primary objective was to evaluate the viability of this approach for accurate pesticide residue monitoring in leafy vegetables. Raman spectral data were collected and preprocessed using a standard normalization technique to reduce spectral noise and enhance signal quality. Dimensionality reduction was achieved through a statistical method that extracted key spectral features and successfully differentiated control from treated samples, explaining a combined variance of 86% across the first two principal components. Graphical score plots revealed clear clustering patterns across various residue concentrations, ranging from 0.01 to 0.5 parts per million, with samples categorized according to regulatory residue limits. To further assess predictive capability, several machine learning models were developed for classification and quantification, including deep learning-based and ensemble-based approaches. Among these, the support vector model achieved the highest classification precision of 95% and demonstrated strong calibration and prediction accuracy. A convolutional neural network achieved 99% training accuracy and 98% testing accuracy, effectively recognizing complex spectral patterns. Statistical validation using analysis of variance confirmed that the observed model differences were significant, supporting the robustness of the selected algorithms. The proposed method accurately quantified Mancozeb residues within the tested range and demonstrated high sensitivity even at low concentration levels. This study highlights the potential of Raman spectroscopy, integrated with computational modelling, as a non-destructive, fast and cost-effective tool for pesticide residue detection in food safety applications.

摘要

粮食作物中农药残留的存在引发了严重的健康问题,因此需要精确、快速且易于使用的检测技术。本研究探讨了结合先进数据分析技术的拉曼光谱法,用于检测和定量羽衣甘蓝中的代森锰锌残留。主要目标是评估这种方法在叶菜类蔬菜中精确监测农药残留的可行性。使用标准归一化技术收集并预处理拉曼光谱数据,以减少光谱噪声并提高信号质量。通过一种统计方法实现降维,该方法提取关键光谱特征,并成功区分对照样品和处理过的样品,前两个主成分解释的组合方差为86%。图形得分图显示了在百万分之0.01至0.5的各种残留浓度下清晰的聚类模式,样品根据监管残留限量进行分类。为了进一步评估预测能力,开发了几种用于分类和定量的机器学习模型,包括基于深度学习和基于集成的方法。其中,支持向量模型实现了最高95%的分类精度,并表现出强大的校准和预测准确性。卷积神经网络实现了99%的训练准确率和98%的测试准确率,有效识别复杂的光谱模式。使用方差分析进行的统计验证证实,观察到的模型差异具有显著性,支持所选算法的稳健性。所提出的方法在测试范围内准确地定量了代森锰锌残留,并且即使在低浓度水平下也表现出高灵敏度。本研究强调了结合计算建模的拉曼光谱法作为食品安全应用中农药残留检测的无损、快速且经济高效工具的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/56d9/12433757/0c8fddff5fb1/ANSA-6-e70045-g006.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验