Hymel John H, McDaniel Jesse G
School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, United States.
J Phys Chem C Nanomater Interfaces. 2025 Aug 28;129(36):16076-16096. doi: 10.1021/acs.jpcc.5c04347. eCollection 2025 Sep 11.
The heterogeneous nature of electrochemical reactions entails unique kinetic control of product yield/selectivity as compared with corresponding homogeneous oxidation/reduction reactions. In direct electrolysis, subsequent elementary steps following the initiating electron transfer may also occur heterogeneously at the electrode surface or homogeneously within the bulk electrolyte, often via a disproportionation step for secondary electron transfer; kinetic control of this branching may have important consequences for product selectivity/yield, due to differences in lifetimes of reactive radical intermediates. In this work, we use computer simulations to predict microscopic rate constants governing the heterogeneous "ECE" electrochemical oxidation of para-methoxybenzyl alcohol to its corresponding aldehyde at a working carbon anode within an aqueous electrolyte. Molecular dynamics simulations are conducted to model the full electrochemical cell at atomistic resolution under conditions approximating controlled potential electrolysis, from which rate constants are predicted via a combination of direct dynamics and free energy sampling methods. Density functional theory-based quantum mechanics/molecular mechanics (DFT-QM/MM) simulations are performed to predict free energy barriers for deprotonation of the cation radical intermediate within the electrical double layer environment. We demonstrate how strong solvophobic forces lead to residence times of ten(s) of nanoseconds for the electrogenerated cation radical intermediates to reside within the anodic double layer, and the relative deprotonation rate is a key factor dictating the heterogeneous vs homogeneous reaction branching. We predict a compelling double-layer modulation for the cation radical deprotonation rate with NaOAc aqueous electrolyte, arising from a combination of preformed "encounter pairs" via ionic interactions and reduction in activation barrier via stereoelectronic effects. Our computational study of this prototypical electrolysis reaction illustrates the substantial role of reaction conditions (solvent, electrolyte, and overpotential) on the microscopic rate constants that kinetically control the reaction pathway/outcome.
与相应的均相氧化/还原反应相比,电化学反应的异质性质需要对产物产率/选择性进行独特的动力学控制。在直接电解中,起始电子转移之后的后续基元步骤也可能在电极表面非均相地发生,或者在本体电解质中均相地发生,通常通过二次电子转移的歧化步骤;由于反应性自由基中间体寿命的差异,这种分支的动力学控制可能对产物选择性/产率产生重要影响。在这项工作中,我们使用计算机模拟来预测在水性电解质中工作的碳阳极上对甲氧基苄醇异质“ECE”电化学氧化为其相应醛的微观速率常数。进行分子动力学模拟,以在近似控制电位电解的条件下,以原子分辨率对整个电化学电池进行建模,从中通过直接动力学和自由能采样方法的组合预测速率常数。进行基于密度泛函理论的量子力学/分子力学(DFT-QM/MM)模拟,以预测双电层环境中阳离子自由基中间体去质子化的自由能垒。我们展示了强疏溶剂力如何导致电生成的阳离子自由基中间体在阳极双层中停留数十纳秒的时间,并且相对去质子化速率是决定异质与均相反应分支的关键因素。我们预测,由于通过离子相互作用形成的预形成“遭遇对”以及通过立体电子效应降低活化能垒的组合,NaOAc水性电解质对阳离子自由基去质子化速率具有引人注目的双层调制作用。我们对这个典型电解反应的计算研究表明,反应条件(溶剂、电解质和过电位)对微观速率常数具有重要作用,这些常数在动力学上控制反应途径/结果。