Vitols Erik, Vaz da Cruz Vinícius, Fransson Thomas, Brumboiu Iulia Emilia
Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland.
Division of Theoretical Chemistry and Biology, KTH Royal Institute of Technology, 100 44 Stockholm, Sweden.
J Phys Chem A. 2025 Sep 25;129(38):8783-8797. doi: 10.1021/acs.jpca.5c04528. Epub 2025 Sep 17.
Resonant inelastic X-ray scattering (RIXS) is one of the most information-rich spectroscopic techniques, uniquely capable of probing excited states through their dependence on momentum, energy, and polarization. However, the inherent difficulty in interpreting RIXS signals underlines the critical need for accurate and efficient spectral calculations to facilitate their understanding. While hierarchical wave function-based methods such as the algebraic diagrammatic construction (ADC) scheme for the polarization propagator have shown promising results in the calculation of RIXS spectra, they remain computationally demanding. To enable fast and efficient RIXS calculations, we evaluate the performance of linear-response time-dependent density functional theory (LR-TDDFT). Two LR-TDDFT approaches are investigated: the restricted-subspace approximation, which uses a subset of occupied and virtual orbitals to compute the valence-excited and selected core-excited states at the same time, and the two-shot LR-TDDFT approach, where the core- and valence-excited states are calculated independently. We benchmark a range of functionals─including global hybrid, range-separated, and tailored range-separated variants─on a set of small molecules using ADC as the reference. We find that all range-separated hybrids and most global hybrid functionals exhibit good agreement with the reference across all metrics. Furthermore, we demonstrate the applicability of LR-TDDFT by computing the RIXS spectrum of C.
共振非弹性X射线散射(RIXS)是信息最为丰富的光谱技术之一,它能够通过激发态对动量、能量和极化的依赖性来独特地探测激发态。然而,解释RIXS信号存在的固有困难凸显了准确高效的光谱计算对于促进理解的迫切需求。虽然基于分层波函数的方法,如用于极化传播子的代数图示构建(ADC)方案,在RIXS光谱计算中已显示出有前景的结果,但它们在计算上仍然要求很高。为了实现快速高效的RIXS计算,我们评估了线性响应含时密度泛函理论(LR-TDDFT)的性能。研究了两种LR-TDDFT方法:受限子空间近似,它使用占据和虚拟轨道的一个子集同时计算价激发态和选定的芯激发态;以及双步LR-TDDFT方法,其中芯激发态和价激发态是独立计算的。我们以ADC作为参考,在一组小分子上对一系列泛函进行了基准测试,这些泛函包括全局杂化、范围分离和定制范围分离变体。我们发现,所有范围分离的杂化泛函和大多数全局杂化泛函在所有指标上都与参考结果表现出良好的一致性。此外,我们通过计算C的RIXS光谱证明了LR-TDDFT的适用性。