Qian Han, Fan Hongzhao, Peng Puguang, Du Yan, Li Xiang, Liu Yanhui, Yang Feiyao, Zhou Yanguang, Wang Zhong Lin, Wei Di
Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, People's Republic of China.
School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China.
Sci Adv. 2025 Sep 19;11(38):eadx1184. doi: 10.1126/sciadv.adx1184. Epub 2025 Sep 17.
Osmotic efficiency is fundamentally governed by the balance between membrane ion selectivity and permeability, a challenge central to both biological signal transmission and sustainable energy conversion. Conventional membranes are constrained to unidirectional transport of either cations or anions, severely limiting their versatility and performance. Inspired by the chloride voltage-gated channel 5 (ClC-5), we engineered a biomimetic Janus NP-MXene membrane featuring subnanochannels (~6.0 angstrom) and exceptional structural integrity, enabling controlled, simultaneous Na/Cl transport with unprecedented permselectivity. Under a 50-fold salinity gradient, the NP-MXene membrane achieved a record power density of 85.1 watts per square meter and an osmotic potential of 181.5 millivolts, the highest reported for a single device. Harnessing ion-specific signals from multi-ion transport, we further demonstrated an iontronic transistor capable of modulating ion flow by salinity gradients, eliminating the need for external gate voltage. This advance enables encoded signals and robotic control for advanced human-machine interfaces. The scalable fabrication of nanofluidic channels facilitates high-performance iontronics for efficient energy-information flow.
渗透效率从根本上由膜离子选择性和渗透性之间的平衡决定,这是生物信号传输和可持续能量转换的核心挑战。传统膜被限制为只能单向传输阳离子或阴离子,严重限制了它们的通用性和性能。受氯离子电压门控通道5(ClC-5)的启发,我们设计了一种具有亚纳米通道(约6.0埃)和卓越结构完整性的仿生Janus NP-MXene膜,能够以前所未有的选择透过性实现可控的同时Na/Cl传输。在50倍的盐度梯度下,NP-MXene膜实现了创纪录的功率密度85.1瓦每平方米和181.5毫伏的渗透压,这是单个装置报道的最高值。利用多离子传输中的离子特异性信号,我们进一步展示了一种能够通过盐度梯度调节离子流的离子晶体管,无需外部栅极电压。这一进展为先进的人机界面实现编码信号和机器人控制。纳米流体通道的可扩展制造促进了用于高效能量-信息流的高性能离子电子学。