Kaschta Daniel, Post Christina, Gaass Franziska, Al-Tawil Milad, Arriens Vincent, Balachandran Saranya, Bäumer Tobias, Berge Valerie, Birgel Friederike, Dalski Andreas, Dittmar Maike, Franke Andre, Franzenburg Sören, Fuß Janina, Gehring Bettina, Gembicki Rebecca, Greiten Bianca, Grohte Kristin, Hanker Britta, Händler Kristian, Harder Lana, Hellenbroich Yorck, Herget Theresia, Herrmann Gloria, Hiort Olaf, Hoff Kirstin, Hoffmann Birga, Hornig Nadine, Hüning Irina, Kautza-Lucht Monika, Köhler Juliane, Liegmann Anna-Sophie, Lisfeld Jasmin, Löscher Britt-Sabina, Margraf Nils G, Meyenborg Michelle, Möllring Anna, Muhle Hiltrud, Penas Eva Maria Murga, Nommels Henning, Papingi Dzhoy, Poggenburg Imke, Pozojevic Jelena, Rosenstiel Philip, Recke Andreas, Roberts Kimberly, Rösler Laelia, Rust Franka, Salewski Maj-Britt, Schau-Römer Katharina, Schlein Christian, Sreenivasan Varun K A, Toutouna Louiza, Utermann-Thüsing Caroline, van der Ven Amelie T, Volk Alexander E, Wehnert Janne, Wilson Sandra, Woitschach Rixa, Yumiceba Veronica, Zühlke Christine, Münchau Alexander, Brüggemann Norbert, Vater Inga, Caliebe Almuth, Nagel Inga, Spielmann Malte
Institute of Human Genetics, University Medical Center Schleswig-Holstein, University of Lübeck & Kiel University, Lübeck, Germany.
Department of Neonatology and Pediatric Intensive Care Medicine, Westphalian Children's Center Dortmund, University of Witten-Herdecke, Witten, Germany.
Genome Med. 2025 Sep 18;17(1):100. doi: 10.1186/s13073-025-01516-7.
Short-read genome sequencing (GS) is among the most comprehensive genetic testing methods available, capable of detecting single-nucleotide variants, copy-number variants, mitochondrial variants, repeat expansions, and structural variants in a single assay. Despite its technical advantages, the full clinical utility of GS in real-world diagnostic settings remains to be fully established.
This study systematically compared singleton GS (sGS), trio GS (tGS), and exome sequencing-based standard-of-care (SoC) genetic testing in 416 patients with rare diseases in a blinded, prospective study. Three independent teams with divergent baseline expertise evaluated the diagnostic yield of GS as a unifying first-tier test and directly compared its variant detection capabilities, learning curve, and clinical feasibility. The SoC team had extensive prior experience in exome-based diagnostics, while the sGS and tGS teams were newly trained in GS interpretation. Diagnostic yield was assessed through both prospective and retrospective analyses.
In our prospective analysis, tGS achieved the highest diagnostic yield for likely pathogenic/pathogenic variants at 36.1% in the newly trained team, surpassing the experienced SoC team at 35.1% and the newly trained sGS team at 28.8%. To evaluate which variants could technically be identified and account for differences in team experience, we conducted a retrospective analysis, achieving diagnostic yields of 36.7% for SoC, 39.1% for sGS, and 40.0% for tGS. The superior yield of GS was attributed to its ability to detect deep intronic, non-coding, and small copy-number variants missed by SoC. Notably, tGS identified three de novo variants classified as likely pathogenic based on recent GeneMatcher collaborations and newly published gene-disease association studies.
Our findings demonstrate that GS, particularly tGS, outperforms SoC in diagnosing rare diseases, with sGS providing a more cost-effective alternative. These results suggest that GS should be considered a first-tier genetic test, offering an efficient, single-step approach to reduce the diagnostic odyssey for patients with rare diseases. The trio approach proved especially valuable for less experienced teams, as inheritance data facilitated variant interpretation and maintained high diagnostic yield, while experienced teams achieved comparable results with singleton analysis alone.
短读长基因组测序(GS)是现有的最全面的基因检测方法之一,能够在一次检测中检测单核苷酸变异、拷贝数变异、线粒体变异、重复序列扩增和结构变异。尽管具有技术优势,但GS在实际诊断环境中的全部临床效用仍有待充分确立。
在一项盲法前瞻性研究中,本研究系统地比较了416例罕见病患者的单样本GS(sGS)、三联体GS(tGS)和基于外显子组测序的标准治疗(SoC)基因检测。三个具有不同基线专业知识的独立团队评估了GS作为统一的一线检测的诊断率,并直接比较了其变异检测能力、学习曲线和临床可行性。SoC团队在基于外显子组的诊断方面有丰富的既往经验,而sGS和tGS团队是新接受GS解读培训的。通过前瞻性和回顾性分析评估诊断率。
在我们的前瞻性分析中,新培训团队中tGS对可能致病/致病变异的诊断率最高,为36.1%,超过了经验丰富的SoC团队(35.1%)和新培训的sGS团队(28.8%)。为了评估哪些变异在技术上可以被识别并解释团队经验的差异,我们进行了回顾性分析,SoC的诊断率为36.7%,sGS为39.1%,tGS为40.0%。GS的更高诊断率归因于其检测SoC遗漏的内含子深处、非编码和小拷贝数变异的能力。值得注意的是,基于最近的GeneMatcher合作和新发表的基因-疾病关联研究,tGS鉴定出三个被分类为可能致病的新生变异。
我们的研究结果表明,GS,特别是tGS,在诊断罕见病方面优于SoC,sGS提供了一种更具成本效益的替代方案。这些结果表明,GS应被视为一线基因检测,提供一种高效的单步方法,以减少罕见病患者的诊断历程。三联体方法对经验较少的团队特别有价值,因为遗传数据有助于变异解读并保持高诊断率,而经验丰富的团队仅通过单样本分析就能取得类似结果。