Suppr超能文献

伪装的膜桥接放射性核素/锰单原子酶靶向脂质代谢紊乱以激发抗肿瘤免疫。

Camouflaged membrane-bridged radionuclide/Mn single-atom enzymes target lipid metabolism disruption to evoke antitumor immunity.

作者信息

Yang Meng-Die, Zhu Chun-Yan, Yang Gang, Zhang Xiao-Yi, Zhu Yi, Chen Miao, Zhang Jia-Jia, Bai Ling, Qin Shan-Shan, Ma Chao, Yu Fei, Zhang Kun

机构信息

Department of Nuclear Medicine, Shanghai Tenth People's Hospital and Institute of Nuclear Medicine, School of Medicine, Tongji University, Shanghai, 200072, China.

Central Laboratory, Department of Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.

出版信息

Mil Med Res. 2025 Sep 19;12(1):59. doi: 10.1186/s40779-025-00647-7.

Abstract

BACKGROUND

Lipid metabolic reprogramming has been increasingly recognized as a key factor contributing to tumor immune evasion, therapeutic resistance, and plasticity, which collectively compromise the efficacy of targeted radionuclide therapy (TRT). Overcoming the immunosuppressive and hypoxic tumor microenvironment (TME) while interfering with tumor lipid metabolism may offer a promising strategy to potentiate TRT outcomes.

METHODS

In this report, a radiopharmaceutical with multienzymatic catalysis activities is developed, wherein tumor cell membrane-coated manganese single-atom nanozymes (Mn/SAE@M) as supports deliver iodine-131 (I) to the tumor. The Mn/SAE nanozyme core was synthesized in situ within hollow mesoporous zeolitic imidazolate frame-8 (ZIF-8) nanoparticles, then coated with homologous tumor cell membranes for targeted delivery and subsequently labeled with I using the Chloramine-T method. A series of in vitro and in vivo experiments was performed in non-small cell lung cancer (NSCLC) models to evaluate therapeutic efficacy and immune activation.

RESULTS

I-Mn/SAE@M exhibited efficient tumor targeting and internalization mediated by membrane camouflage. Within the TME, the radiopharmaceuticals initiated abundant oxygen (O) release through catalase (CAT)-like catalysis, thereby mitigating a hypoxic microenvironment. In particular, it produced and enriched more reactive oxygen species (ROS) through oxidase (OXD)-, peroxidase (POD)-, and glutathione oxidase (GSHOx)-like catalytic processes. Importantly, I-Mn/SAE@M activated the cGAS-STING pathway, interfered with the lipid metabolic homeostasis of tumor cells, and induced ferroptosis, which is unraveled to take responsibility for the potentiated antitumor immunity. In bilateral NSCLC tumor-bearing mice, the treatment suppressed both the first and the second tumors, indicating the generation of systemic antitumor immune responses and immunological memory.

CONCLUSIONS

Such SAE-based radiopharmaceuticals provide a candidate platform to elevate TRT efficiency, and the proof-of-concept rationale of disrupting lipid metabolic homeostasis through multienzyme-mimicking cascade reactions also provides a general avenue to improve TRT and synergistically magnify antitumor immunity.

摘要

背景

脂质代谢重编程日益被认为是导致肿瘤免疫逃逸、治疗耐药性和可塑性的关键因素,这些因素共同损害了靶向放射性核素治疗(TRT)的疗效。在干扰肿瘤脂质代谢的同时克服免疫抑制和缺氧的肿瘤微环境(TME)可能提供一种有前景的策略来增强TRT效果。

方法

在本报告中,开发了一种具有多酶催化活性的放射性药物,其中以肿瘤细胞膜包被的锰单原子纳米酶(Mn/SAE@M)为载体将碘-131(I)递送至肿瘤。Mn/SAE纳米酶核心在中空介孔沸石咪唑酯骨架-8(ZIF-8)纳米颗粒内原位合成,然后用同源肿瘤细胞膜包被以进行靶向递送,随后使用氯胺-T法用I进行标记。在非小细胞肺癌(NSCLC)模型中进行了一系列体外和体内实验,以评估治疗效果和免疫激活情况。

结果

I-Mn/SAE@M表现出由膜伪装介导的高效肿瘤靶向和内化。在TME内,放射性药物通过类过氧化氢酶(CAT)催化引发大量氧气(O)释放,从而减轻缺氧微环境。特别是,它通过类氧化酶(OXD)、过氧化物酶(POD)和谷胱甘肽氧化酶(GSHOx)催化过程产生并富集更多活性氧(ROS)。重要的是,I-Mn/SAE@M激活了cGAS-STING途径,干扰了肿瘤细胞的脂质代谢稳态,并诱导铁死亡,这被证明是增强抗肿瘤免疫力的原因。在双侧荷NSCLC肿瘤小鼠中,该治疗抑制了原发性和继发性肿瘤,表明产生了全身性抗肿瘤免疫反应和免疫记忆。

结论

这种基于SAE的放射性药物提供了一个提高TRT效率的候选平台,并且通过模拟多酶级联反应破坏脂质代谢稳态的概念验证原理也提供了一条改善TRT并协同放大抗肿瘤免疫力的通用途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验