Suppr超能文献

MorphoITH:一种利用组织形态学对肿瘤内异质性进行反卷积的框架。

MorphoITH: a framework for deconvolving intra-tumor heterogeneity using tissue morphology.

作者信息

Nielsen Aleksandra Weronika, Manoochehri Hafez Eslami, Zhong Hua, Panwar Vandana, Jarmale Vipul, Jasti Jay, Nourani Mehrdad, Rakheja Dinesh, Brugarolas James, Kapur Payal, Rajaram Satwik

机构信息

Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, USA.

Department of Electrical and Computer Engineering, The University of Texas at Dallas, Richardson, TX, USA.

出版信息

Genome Med. 2025 Sep 19;17(1):101. doi: 10.1186/s13073-025-01504-x.

Abstract

BACKGROUND

Tumor evolution, driven by the emergence of genetically and epigenetically distinct subclones, enables cancers to adapt to selective pressures and become more aggressive, posing a major challenge in oncology. Multi-regional sequencing has been the primary means of studying tumor evolution and the resultant intra-tumor heterogeneity (ITH), but its high cost, resource-intensiveness, and limited scalability have hindered clinical utility.

METHODS

Here, we present MorphoITH, a novel framework that aims to infer molecular ITH from routinely collected histopathology slides by quantifying phenotypic diversity. MorphoITH integrates a task-agnostic, self-supervised deep learning similarity measure to capture phenotypic variation across multiple dimensions (cytology, architecture, and microenvironment) along with rigorous methods to eliminate spurious sources of variation.

RESULTS

Applying MorphoITH to clear cell renal cell carcinoma (ccRCC), a disease notably shaped by ITH, we show that it captures clinically significant biological features such as vascular architecture and nuclear grade. MorphoITH also recognizes morphological changes associated with subclonal alterations in key driver genes (BAP1, PBRM1, SETD2). Finally, in a multi-regional sequencing dataset, we find that the morphological trajectories revealed by MorphoITH largely mirror underlying patterns of genetic evolution.

CONCLUSIONS

MorphoITH provides a scalable and rigorous approach to quantify morphological ITH, serving as a potential proxy for underlying genetic ITH and tumor evolution. By linking histopathology with genomic insights, it lays the foundation for more refined phenotypic profiling in support of precision oncology.

摘要

背景

肿瘤进化由基因和表观遗传上不同的亚克隆的出现所驱动,使癌症能够适应选择性压力并变得更具侵袭性,这在肿瘤学中构成了重大挑战。多区域测序一直是研究肿瘤进化及由此产生的肿瘤内异质性(ITH)的主要手段,但其高成本、资源密集性和有限的可扩展性阻碍了其临床应用。

方法

在此,我们提出了MorphoITH,这是一个新颖的框架,旨在通过量化表型多样性从常规收集的组织病理学切片中推断分子ITH。MorphoITH整合了一种与任务无关的自监督深度学习相似性度量,以捕获多个维度(细胞学、结构和微环境)上的表型变异,同时采用严格的方法消除变异的虚假来源。

结果

将MorphoITH应用于透明细胞肾细胞癌(ccRCC),这是一种明显受ITH影响的疾病,我们发现它能够捕获具有临床意义的生物学特征,如血管结构和核分级。MorphoITH还识别出与关键驱动基因(BAP1、PBRM1、SETD2)的亚克隆改变相关的形态学变化。最后,在一个多区域测序数据集中,我们发现MorphoITH揭示的形态学轨迹在很大程度上反映了潜在的遗传进化模式。

结论

MorphoITH提供了一种可扩展且严谨的方法来量化形态学ITH,可作为潜在的遗传ITH和肿瘤进化的替代指标。通过将组织病理学与基因组学见解联系起来,它为更精细的表型分析奠定了基础,以支持精准肿瘤学。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验