Suppr超能文献

Pacpaint:一种基于组织学的深度学习模型揭示了胰腺腺癌广泛的肿瘤内分子异质性。

Pacpaint: a histology-based deep learning model uncovers the extensive intratumor molecular heterogeneity of pancreatic adenocarcinoma.

机构信息

Owkin France, Medical Imaging Team, Paris, France.

Université Paris Cité, Dpt of Pathology - FHU MOSAIC, Beaujon Hospital, INSERM U1149, Clichy, France.

出版信息

Nat Commun. 2023 Jun 13;14(1):3459. doi: 10.1038/s41467-023-39026-y.

Abstract

Two tumor (Classical/Basal) and stroma (Inactive/active) subtypes of Pancreatic adenocarcinoma (PDAC) with prognostic and theragnostic implications have been described. These molecular subtypes were defined by RNAseq, a costly technique sensitive to sample quality and cellularity, not used in routine practice. To allow rapid PDAC molecular subtyping and study PDAC heterogeneity, we develop PACpAInt, a multi-step deep learning model. PACpAInt is trained on a multicentric cohort (n = 202) and validated on 4 independent cohorts including biopsies (surgical cohorts n = 148; 97; 126 / biopsy cohort n = 25), all with transcriptomic data (n = 598) to predict tumor tissue, tumor cells from stroma, and their transcriptomic molecular subtypes, either at the whole slide or tile level (112 µm squares). PACpAInt correctly predicts tumor subtypes at the whole slide level on surgical and biopsies specimens and independently predicts survival. PACpAInt highlights the presence of a minor aggressive Basal contingent that negatively impacts survival in 39% of RNA-defined classical cases. Tile-level analysis ( > 6 millions) redefines PDAC microheterogeneity showing codependencies in the distribution of tumor and stroma subtypes, and demonstrates that, in addition to the Classical and Basal tumors, there are Hybrid tumors that combine the latter subtypes, and Intermediate tumors that may represent a transition state during PDAC evolution.

摘要

已描述了具有预后和治疗意义的两种肿瘤(经典/基底)和基质(不活跃/活跃)亚型的胰腺导管腺癌(PDAC)。这些分子亚型是通过 RNA 测序定义的,这是一种昂贵的技术,对样本质量和细胞密度敏感,不适用于常规实践。为了允许快速 PDAC 分子分型并研究 PDAC 异质性,我们开发了 PACpAInt,这是一种多步骤深度学习模型。PACpAInt 是在多中心队列(n=202)上进行训练,并在 4 个独立队列上进行验证,包括活检(手术队列 n=148; 97; 126/活检队列 n=25),所有队列均具有转录组数据(n=598),以预测肿瘤组织、来自基质的肿瘤细胞及其转录组分子亚型,无论是在整个幻灯片还是瓷砖水平(112µm 平方)。PACpAInt 可在手术和活检标本的整个幻灯片水平上正确预测肿瘤亚型,并独立预测生存。PACpAInt 突出显示了在 39%的 RNA 定义的经典病例中存在对生存产生负面影响的次要侵袭性基底成分。瓷砖水平分析(>600 万)重新定义了 PDAC 微异质性,显示了肿瘤和基质亚型分布之间的依存关系,并表明除了经典和基底肿瘤外,还有混合肿瘤,其结合了后两种亚型,以及中间肿瘤,它们可能代表 PDAC 进化过程中的过渡状态。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d444/10264377/4d48d133e6c2/41467_2023_39026_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验