Suppr超能文献

利用可穿戴传感器根据行走模式进行性别分类和年龄估计。

Using Wearable Sensors for Sex Classification and Age Estimation from Walking Patterns.

作者信息

Ruhan Rizvan Jawad, Wahid Tahsin, Rahman Ashikur, Leshob Abderrahmane, Rab Raqeebir

机构信息

Department of Computer Science and Engineering, Bangladesh University of Engineering and Technology, Dhaka 1000, Bangladesh.

Department of Analytics, Operations, and Information Technology, University of Quebec in Montreal, Montreal, QC H2X 3X2, Canada.

出版信息

Sensors (Basel). 2025 Jun 2;25(11):3509. doi: 10.3390/s25113509.

Abstract

Gait refers to the walking pattern of an individual and it varies from person to person. Consequently, it can be considered to be a biometric feature, similar to the face, iris, or fingerprints, and can easily be used for human identification purposes. Person identification using gait analysis has direct applications in user authentication, visual surveillance and monitoring, and access control-to name a few. Naturally, gait analysis has attracted many researchers both from academia and industry over the past few decades. Within a small population, the accuracy of person identification could be very high; however, with the growing number of people in a given gait database, identifying a person only from gait becomes a daunting task. Hence, the focus of researchers in this field has exhibited a paradigm shift to a broader problem of sex and age prediction using different biometric parameters-with gait analysis obviously being one of them. Recent works on sex and age prediction using gait pattern obtained from the inertial sensors lacks an analysis of the features being used. In this paper, we propose a number of features inherent to gait data and analyze key features from the time-series data of accelerometer and gyroscopes for the automatic recognition of sex and the prediction of age. We have trained various traditional machine learning models and achieved the highest accuracy of 94% in sex prediction and an R2 score of 0.83 in age estimation.

摘要

步态指的是个体的行走模式,因人而异。因此,它可被视为一种生物特征,类似于面部、虹膜或指纹,能够轻易用于身份识别目的。利用步态分析进行身份识别在用户认证、视觉监控以及访问控制等方面有直接应用,仅举几例。自然地,在过去几十年里,步态分析吸引了众多来自学术界和业界的研究人员。在小群体中,身份识别的准确率可能很高;然而,随着给定步态数据库中人数的增加,仅从步态识别一个人就成为一项艰巨的任务。因此,该领域研究人员的重点已呈现出一种范式转变,转向使用不同生物特征参数进行性别和年龄预测这一更广泛的问题——步态分析显然是其中之一。近期利用从惯性传感器获取的步态模式进行性别和年龄预测的研究缺乏对所使用特征的分析。在本文中,我们提出了一些步态数据固有的特征,并从加速度计和陀螺仪的时间序列数据中分析关键特征,用于自动识别性别和预测年龄。我们训练了各种传统机器学习模型,在性别预测中达到了94%的最高准确率,在年龄估计中R2分数为0.83。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验