Zhang Kaiyuan, Cui Lekang, Liu Lang, Zhao Yan, Niu Bo, Long Donghui, Zhang Yayun
State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China.
Key Laboratory of Low-Grade Energy Utilization Technologies and Systems, Ministry of Education, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China.
ACS Nano. 2025 Sep 30;19(38):34204-34216. doi: 10.1021/acsnano.5c10841. Epub 2025 Sep 17.
Lithium-sulfur (Li-S) batteries are significantly constrained by severe polysulfide shuttling and sluggish redox kinetics, primarily due to the challenge of concurrently modulating the sulfur reduction reaction (SRR) during discharge and the sulfur evolution reaction (SER) during charge. Addressing this issue necessitates the development of advanced electrocatalysts that can effectively decouple these distinct pathways while providing complementary active sites. Herein, we construct a site-specific Ni-Mo dual-atom catalyst via atomic-level engineering, in which the Ni and Mo centers are respectively tailored to promote the SRR and SER. Experimental characterizations and theoretical calculations reveal that Ni facilitates the liquid-to-solid conversion of lithium polysulfide, while Mo reduces the energy barrier for LiS decomposition. This dual-atom configuration not only retains the intrinsic activity of each metal but also enhances orbital coupling through localized electronic reconstruction, enabling coordinated and directional modulation of sulfur redox reactions. When applied in Li-S batteries, the Ni-Mo DAC delivers a high rate capacity (770.3 mAh g at 5.0C), minimal capacity fading (0.033% per cycle over 1000 cycles), and excellent stability under high sulfur loading and broad temperature conditions. This work offers a rational strategy for constructing redox-coordinated catalytic interfaces to resolve kinetic asymmetry in Li-S electrochemistry.
锂硫(Li-S)电池受到严重的多硫化物穿梭和缓慢的氧化还原动力学的显著限制,这主要是由于在放电过程中同时调节硫还原反应(SRR)和充电过程中的析硫反应(SER)面临挑战。解决这个问题需要开发先进的电催化剂,这些催化剂能够有效地分离这些不同的途径,同时提供互补的活性位点。在此,我们通过原子级工程构建了一种位点特异性的镍钼双原子催化剂,其中镍和钼中心分别经过调整以促进SRR和SER。实验表征和理论计算表明,镍促进多硫化锂的液-固转化,而钼降低了LiS分解的能量势垒。这种双原子结构不仅保留了每种金属的固有活性,还通过局部电子重构增强了轨道耦合,从而实现了硫氧化还原反应的协同和定向调节。当应用于锂硫电池时,镍钼双原子催化剂具有高倍率容量(在5.0C下为770.3 mAh g)、最小的容量衰减(在1000次循环中每循环0.033%)以及在高硫负载和宽温度条件下的出色稳定性。这项工作为构建氧化还原协调催化界面以解决锂硫电化学中的动力学不对称问题提供了一种合理策略。