Suppr超能文献

用核壳结构的FeO@DFNS纳米颗粒构建轻质混凝土:通往智能耐用胶凝材料的途径。

Structuring lightweight concrete with core-shell FeO@DFNS nanoparticles: a path to smart and durable cementitious materials.

作者信息

Abutorabi Seyed Ali, Honarbakhsh Amin, Zhiani Rahele, Movahedifar Seyed Mojtaba, Nobahari Mehdi

机构信息

Department of Civil Engineering, Ne.C., Islamic Azad University Neyshabur Iran

Department of Chemistry, Ne.C., Islamic Azad University Neyshabur Iran

出版信息

RSC Adv. 2025 Sep 17;15(41):34079-34093. doi: 10.1039/d5ra04695e.

Abstract

The integration of functional nanostructures into lightweight concrete (LC) offers a promising solution to address its inherent drawbacks, including high porosity, shrinkage, and limited durability under aggressive environmental conditions. This study evaluates the effect of FeO@DFNS nanoparticles on the workability, ultrasonic pulse velocity (UPV), and durability of lightweight concrete. Experimental results show significant improvements in compressive strength, resistance to chloride ion penetration, and thermal conductivity, while maintaining the lightweight properties of the concrete. In this study, a novel core-shell nanocomposite comprising magnetic FeO nanoparticles encapsulated within dendritic fibrous nanosilica (FeO@DFNS) was shown to enhance the performance of LC, particularly for marine applications. The FeO@DFNS system was synthesized a co-precipitation-sol-gel approach, combining magnetic dispersibility with high surface area and hierarchical porosity. Various dosages (0.05-0.35 wt%) were incorporated into LC mixes and evaluated through rheological, mechanical, thermal, and microstructural analyses. The optimal dosage (0.25 wt%) significantly improved workability and compressive strength by 30%, while reducing water absorption, porosity, and drying shrinkage. Durability assessments revealed a substantial enhancement in resistance to chloride ion ingress. Rapid chloride penetration test (RCPT), Fick's second law diffusion modeling, and chloride profiling confirmed over 45% reduction in penetration depth. Additional cyclic wetting-drying in artificial seawater showed 71% lower mass loss. Coupled FEM simulations validated improved stress distribution and delayed cracking, while X-ray CT revealed macro/micro void distribution and TEM confirmed the nanostructural features, together evidencing microstructural refinement. Furthermore, FeO@DFNS reduced thermal conductivity by ∼20%, indicating potential for energy-efficient construction. The multifunctional behavior of this nanocomposite demonstrates its effectiveness as an intelligent additive for long-term durability and structural performance in coastal and marine-grade concrete.

摘要

将功能性纳米结构融入轻质混凝土(LC)为解决其固有缺点提供了一种很有前景的解决方案,这些缺点包括高孔隙率、收缩以及在恶劣环境条件下耐久性有限。本研究评估了FeO@DFNS纳米颗粒对轻质混凝土工作性、超声脉冲速度(UPV)和耐久性的影响。实验结果表明,在保持混凝土轻质特性的同时,抗压强度、抗氯离子渗透能力和导热系数有显著提高。在本研究中,一种新型核壳纳米复合材料被证明可提高轻质混凝土的性能,特别是在海洋应用方面。该复合材料由包裹在树枝状纤维纳米二氧化硅(FeO@DFNS)中的磁性FeO纳米颗粒组成。FeO@DFNS体系采用共沉淀-溶胶-凝胶法合成,兼具磁分散性、高比表面积和分级孔隙率。将不同剂量(0.05-0.35 wt%)的FeO@DFNS掺入LC混合料中,并通过流变学、力学、热学和微观结构分析进行评估。最佳剂量(0.25 wt%)显著提高了工作性和抗压强度30%,同时降低了吸水率、孔隙率和干燥收缩率。耐久性评估显示抗氯离子侵入能力有大幅增强。快速氯离子渗透试验(RCPT)、菲克第二定律扩散模型和氯离子剖面分析证实渗透深度降低了45%以上。在人工海水中进行的额外循环干湿试验表明质量损失降低了71%。耦合有限元模拟验证了应力分布的改善和裂缝的延迟出现,而X射线CT揭示了宏观/微观孔隙分布,透射电子显微镜(TEM)证实了纳米结构特征,共同证明了微观结构的细化。此外,FeO@DFNS使导热系数降低了约20%,表明其在节能建筑方面的潜力。这种纳米复合材料的多功能特性证明了它作为一种智能添加剂在沿海和海洋级混凝土长期耐久性和结构性能方面的有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4352/12442414/e2b4655f6fc7/d5ra04695e-s1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验