Suppr超能文献

用于贫锂电池中具有富氟化锂固体电解质界面的水平锂生长的氟氮共掺杂碳载体

Fluorine-Nitrogen Codoped Carbon Host for Horizontal Lithium Growth with Lithium Fluoride-Rich Solid Electrolyte Interphase in Lean-Lithium Batteries.

作者信息

Jeong Yunji, Heo Changhoon, Kim Moonsu, Lee Gibaek

机构信息

School of Chemical Engineering, Yeungnam University, 38541 Gyeongsan, Republic of Korea.

AI & Robotics Convergence R&D Laboratories, POSCO Holdings, 06194 Seoul, Republic of Korea.

出版信息

ACS Nano. 2025 Sep 30;19(38):34163-34179. doi: 10.1021/acsnano.5c10608. Epub 2025 Sep 19.

Abstract

Lithium (Li) metal is considered as a highly promising anode material for next-generation rechargeable batteries due to its ultrahigh theoretical capacity (3860 mAh g) and the lowest redox potential (-3.04 V vs standard hydrogen electrode (SHE)). Nevertheless, its practical application is significantly impeded by uncontrolled dendrite formation, unstable solid electrolyte interphase (SEI), and low Coulombic efficiency, which collectively compromise cycling stability and safety. In this work, we present a fluorine and nitrogen codoped porous carbon (FNC) framework as an engineered host for regulating lithium nucleation and interfacial chemistry. Nitrogen doping enhances surface lithiophilicity and reduces nucleation overpotential, while fluorine incorporation facilitates the in situ formation of a LiF-rich SEI layer with superior mechanical robustness and chemical stability. The FNC host promotes planar lithium deposition and mitigates electrolyte decomposition and volume fluctuations. Compared with nitrogen-doped carbon (NC) and bare copper substrates, the FNC@Cu electrode exhibits markedly lower overpotential and dendrite-free horizontal lithium growth, leading to suppressed dead Li accumulation and enhanced reversibility. It achieves a Coulombic efficiency (CE) of 94% over 100 cycles at 2 mA cm and retains 97% over 300 cycles under lean-lithium conditions. Full cell tests with LiFePO cathodes reveal a stable cycling performance with 95.1% capacity retention after 250 cycles (N/P ratio = 1.5), highlighting the practical viability of the FNC framework. These results underscore the efficacy of heteroatom codoping and interfacial design for realizing high-performance, lean-lithium metal batteries.

摘要

锂(Li)金属因其超高的理论容量(3860 mAh g)和最低的氧化还原电位(相对于标准氢电极(SHE)为-3.04 V),被认为是下一代可充电电池极具前景的负极材料。然而,其实际应用受到不受控制的枝晶形成、不稳定的固体电解质界面(SEI)和低库仑效率的显著阻碍,这些因素共同影响了循环稳定性和安全性。在这项工作中,我们提出了一种氟氮共掺杂的多孔碳(FNC)框架作为一种经过设计的主体,用于调节锂的成核和界面化学。氮掺杂增强了表面亲锂性并降低了成核过电位,而氟的引入则促进了富含LiF的SEI层的原位形成,该SEI层具有优异的机械强度和化学稳定性。FNC主体促进平面锂沉积,并减轻电解质分解和体积波动。与氮掺杂碳(NC)和裸铜基板相比,FNC@Cu电极表现出明显更低的过电位和无枝晶的水平锂生长,从而抑制了死锂的积累并提高了可逆性。在2 mA cm下100次循环中,其库仑效率(CE)达到94%,在贫锂条件下300次循环后仍保持97%。使用LiFePO阴极的全电池测试显示出稳定的循环性能,250次循环后容量保持率为95.1%(N/P比 = 1.5),突出了FNC框架的实际可行性。这些结果强调了杂原子共掺杂和界面设计对于实现高性能贫锂金属电池的有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验