Jiang Shan, Yang Shuo, Yang Zhiyong, Zhang Daguang, Luan Yingkai, Zhou Zeyang
School of Mechanical Engineering, Tianjin University, Tianjin, China.
Department of Radiation Oncology, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China.
J Appl Clin Med Phys. 2025 Oct;26(10):e70243. doi: 10.1002/acm2.70243.
This study proposes a multidimensional hybrid twin navigation system to enhance applicator placement accuracy in low-energy x-ray intraoperative radiotherapy (kV-IORT), particularly for less-experienced practitioners. The system integrates augmented reality (AR) and digital twin technologies to improve intraoperative precision and usability.
The system comprises three core modules: (1) a holographic dose (Holo-dose) model visualizing clinically relevant radiation layers based on Zeiss TARGIT data, (2) a patient-specific applicator positioning strategy with real-time AR feedback adapted to tumor bed geometry, and (3) a bidirectional hybrid twin control linking a physical radiotherapy robot with its virtual twin for precise navigation. Phantom experiments utilized a 20 mm spherical applicator within a 30 mm tumor bed boundary. Target dose range was 18.50-19.50 Gy (15 mm radius) over 25 min. Accuracy was evaluated via root mean square error (RMSE) and target registration error (TRE). Mean RMSE was 0.383 mm (phantom) and 0.106 mm (robot); mean TRE was 0.41 mm.
The system significantly enhanced positioning accuracy for novice users. Medical students achieved an average precision of 2.971 mm (p = 0.00015), and inexperienced physicians reached 2.803 mm (p = 0.00038). No significant improvement was observed for experienced surgeons (p > 0.05), indicating the system's potential as a training and assistance tool. The average System Usability Scale (SUS) score was 83.5, suggesting high user satisfaction, especially among younger participants.
The hybrid twin navigation system significantly improved applicator placement accuracy for novice users, demonstrating its value as an effective training and assistance tool for kV-IORT. High user satisfaction and sub-millimeter registration and alignment accuracy confirm its potential for clinical translation, particularly in enhancing usability and precision for less-experienced practitioners.
本研究提出一种多维混合双导航系统,以提高低能X射线术中放疗(kV-IORT)中施源器放置的准确性,特别是对于经验较少的从业者。该系统集成了增强现实(AR)和数字孪生技术,以提高术中的精度和可用性。
该系统包括三个核心模块:(1)基于蔡司TARGIT数据可视化临床相关辐射层的全息剂量(Holo-dose)模型;(2)根据肿瘤床几何形状进行实时AR反馈的患者特异性施源器定位策略;(3)将物理放疗机器人与其虚拟孪生体相连接以进行精确导航的双向混合双控制。体模实验使用了在30mm肿瘤床边界内的20mm球形施源器。在25分钟内目标剂量范围为18.50 - 19.50Gy(半径15mm)。通过均方根误差(RMSE)和目标配准误差(TRE)评估准确性。平均RMSE在体模中为0.383mm,在机器人中为0.106mm;平均TRE为0.41mm。
该系统显著提高了新手用户的定位准确性。医学生的平均精度达到2.971mm(p = 0.00015),经验不足的医生达到2.803mm(p = 0.00038)。经验丰富的外科医生未观察到显著改善(p > 0.05),表明该系统作为培训和辅助工具的潜力。系统可用性量表(SUS)的平均得分为83.5,表明用户满意度较高,尤其是在年轻参与者中。
混合双导航系统显著提高了新手用户施源器放置的准确性,证明了其作为kV-IORT有效培训和辅助工具的价值。高用户满意度以及亚毫米级的配准和对准精度证实了其临床转化的潜力,特别是在提高经验较少从业者的可用性和精度方面。