Suppr超能文献

关于用于药物-靶点结合预测的深度学习的综述:模型、基准测试、评估及案例研究

A survey on deep learning for drug-target binding prediction: models, benchmarks, evaluation, and case studies.

作者信息

Debnath Kusal, Rana Pratip, Ghosh Preetam

机构信息

Department of Computer Science, Virginia Commonwealth University, Richmond, VA 23284, United States.

Department of Computer Science, Old Dominion University, Norfolk, VA 23529, United States.

出版信息

Brief Bioinform. 2025 Aug 31;26(5). doi: 10.1093/bib/bbaf491.

Abstract

Conventional drug discovery is expensive, time-consuming, and prone to failure. Artificial intelligence has become a potent substitute over the last decade, providing strong answers to challenging biological issues in this field. Among these difficulties, drug-target binding (DTB) is a key component of drug discovery techniques. In this context, drug-target affinity and drug-target interaction are complementary and essential frameworks that work together to improve our comprehension of DTB dynamics. In this work, we thoroughly analyze the most recent deep learning models, popular benchmark datasets, and assessment metrics for DTB prediction. We look at the paradigm shift in the development of drug discovery research since researchers started using deep learning as a potent tool for DTB prediction. In particular, we examine how methodologies have evolved, starting with early heterogeneous network-based approaches, progressing to graph-based approaches that were widely accepted, followed by modern attention-based architectures, and finally, the most recent multimodal approaches. We also provide case studies utilizing an extensive compound library against specific protein targets implicated in critical cancer pathways to demonstrate the usefulness of these approaches. In addition to summarizing the latest developments in DTB prediction models, this review also identifies their drawbacks. It also highlights the outlook for the DTB prediction domain and future research directions. Combined, these studies present a more comprehensive view of how deep learning offers a quantitative framework for researching drug-target relationships, speeding up the identification of new drug candidates and making it easier to identify possible DTBs.

摘要

传统的药物发现成本高昂、耗时且容易失败。在过去十年中,人工智能已成为一种强大的替代方法,为该领域具有挑战性的生物学问题提供了有力的解决方案。在这些难题中,药物-靶点结合(DTB)是药物发现技术的关键组成部分。在此背景下,药物-靶点亲和力和药物-靶点相互作用是相辅相成且必不可少的框架,它们共同作用以增进我们对DTB动态的理解。在这项工作中,我们全面分析了用于DTB预测的最新深度学习模型、流行的基准数据集和评估指标。我们审视了自研究人员开始将深度学习用作DTB预测的强大工具以来药物发现研究发展中的范式转变。特别是,我们研究了方法是如何演变的,从早期基于异构网络的方法开始,发展到被广泛接受的基于图的方法,接着是现代基于注意力的架构,最后是最新的多模态方法。我们还提供了案例研究,利用一个广泛的化合物库针对与关键癌症途径相关的特定蛋白质靶点,以证明这些方法的实用性。除了总结DTB预测模型的最新进展外,本综述还指出了它们的缺点。它还突出了DTB预测领域的前景和未来研究方向。综合来看,这些研究更全面地展示了深度学习如何为研究药物-靶点关系提供一个定量框架,加速新药候选物的识别,并使识别可能的DTB变得更加容易。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验