Suppr超能文献

使用非侵入性增强磁共振成像放射组学对肝门部胆管癌纵向范围进行术前评估:一项多中心研究

Preoperative assessment of longitudinal extent in hilar cholangiocarcinoma using noninvasive enhanced MR radiomics: a multicenter study.

作者信息

Quan Xin, Huang Xinqiao, Liu Jiong, Yuan Xiang, Shu Jian

机构信息

Department of Radiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China.

Department of Radiology, The Jiangsu Province Hospital of Chinese Medicine Chongqing Hospital (Chongqing Yongchuan Hospital of Chinese Medicine), Chongqing, China.

出版信息

Front Oncol. 2025 Sep 5;15:1632630. doi: 10.3389/fonc.2025.1632630. eCollection 2025.

Abstract

OBJECTIVE

This study aims to develop a noninvasive radiomics model based on magnetic resonance imaging (MRI) for accurately predicting the longitudinal extent of hilar cholangiocarcinoma (HCCA), to assist in subsequent surgical decision making.

METHODS

This study retrospectively collected and analyzed data from patients with HCCA across three medical centers in China. Radiomics quantitative features were extracted from T2-weighted imaging (T2WI), diffusion-weighted imaging (DWI), and enhanced T1 high-resolution isotropic volume examination (e-THRIVE) sequences. L1 regularization was employed to select features, and three single-sequence radiomics models were developed to predict Bismuth type IV of HCCA. To improve the predictive accuracy for Bismuth type IV, the fusion model integrating the three single-sequence models was constructed. The performance of these models was evaluated comprehensively, and the optimal radiomics model for predicting longitudinal extent was identified.

RESULTS

A total of 154 patients with HCCA were included in the analysis. The radiomics models based on T2WI, DWI, and e-THRIVE sequences demonstrated predictive capabilities, with AUC values in the training set of 0.867, 0.923, and 0.872, respectively, and AUC values in the test set of 0.809, 0.823, and 0.808, respectively. The fusion model, which combined features from all three sequences, achieved superior predictive performance, with an AUC of 0.980 in the training set and 0.907 in the test set. This model demonstrated robust potential for predicting whether the HCCA was classified as Bismuth type IV.

CONCLUSION

The multi-sequence MRI-based radiomics model can effectively predict Bismuth type IV of HCCA, assisting in clinical surgical decision-making, facilitating R0 resection to improve the prognosis of patients with HCCA.

摘要

目的

本研究旨在基于磁共振成像(MRI)开发一种非侵入性的影像组学模型,以准确预测肝门部胆管癌(HCCA)的纵向范围,辅助后续手术决策。

方法

本研究回顾性收集并分析了来自中国三个医疗中心的HCCA患者数据。从T2加权成像(T2WI)、扩散加权成像(DWI)和增强T1高分辨率各向同性容积检查(e-THRIVE)序列中提取影像组学定量特征。采用L1正则化进行特征选择,并开发了三个单序列影像组学模型来预测HCCA的Bismuth IV型。为提高对Bismuth IV型的预测准确性,构建了整合三个单序列模型的融合模型。综合评估这些模型的性能,确定预测纵向范围的最佳影像组学模型。

结果

共纳入154例HCCA患者进行分析。基于T2WI、DWI和e-THRIVE序列的影像组学模型显示出预测能力,训练集的AUC值分别为0.867、0.923和0.872,测试集的AUC值分别为0.809、0.823和0.808。结合所有三个序列特征的融合模型表现出卓越的预测性能,训练集的AUC为0.980,测试集的AUC为0.907。该模型在预测HCCA是否为Bismuth IV型方面显示出强大的潜力。

结论

基于多序列MRI的影像组学模型能够有效预测HCCA的Bismuth IV型,辅助临床手术决策,促进R0切除,改善HCCA患者的预后。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/abee/12446029/aa64b953075d/fonc-15-1632630-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验