Lepage Maxime, Chobé Mattéo, Messaoudene Sonia, Barbiero Jehan-Sylvin, Mathieu Vincent, Jany Christophe, Hartmann Jean-Michel, Lartigue Olivier, Bourlon Bertrand, Seassal Christian, Bakir Badhise Ben
Opt Express. 2025 Sep 8;33(18):37614-37628. doi: 10.1364/OE.569968.
The increasing demand for mid-infrared (MIR) photonic integrated devices in spectroscopic applications has driven the development of essential building blocks for chemical sensing, including quantum cascade lasers (QCLs), MIR silicon photonic platforms and integrated detectors. A fully integrated MIR silicon photonic chip would enable cost-effective mass production using CMOS-compatible fabrication, paving the way for consumer-grade MIR devices and large-scale onsite sensing applications. However, the integration of QCLs with MIR silicon platforms remains a major challenge due to inefficient optical coupling between the III-V active region and silicon waveguides, leading to high insertion losses and reduced device performance. In this work, we demonstrate the heterogeneous integration of a QCL onto a believed to be novel high-index-contrast, phase-matched silicon on nitride on insulator (SONOI) photonic platform using molecular bonding. By leveraging a phase-matching condition, we implement an adiabatic coupling scheme that ensures efficient optical power transfer from the III-V active region to the silicon waveguides, overcoming a key limitation of previous approaches. The resulting hybrid distributed-feedback (DFB) QCL exhibits single-mode emission at 4.315 µm and operates in pulsed mode up to 72 °C. This advancement opens new possibilities for fully integrated MIR photonic circuits, with potential applications in environmental monitoring, biomedical diagnostics, and industrial sensing.
光谱应用中对中红外(MIR)光子集成器件日益增长的需求推动了化学传感关键组件的发展,这些组件包括量子级联激光器(QCL)、MIR硅光子平台和集成探测器。一个完全集成的MIR硅光子芯片将能够使用与CMOS兼容的制造工艺进行具有成本效益的大规模生产,为消费级MIR设备和大规模现场传感应用铺平道路。然而,由于III-V族有源区与硅波导之间的光耦合效率低下,导致高插入损耗和器件性能下降,将QCL与MIR硅平台集成仍然是一个重大挑战。在这项工作中,我们展示了使用分子键合将QCL异质集成到一个据信是新型的高折射率对比度、相位匹配的绝缘体上氮化硅上硅(SONOI)光子平台上。通过利用相位匹配条件,我们实现了一种绝热耦合方案,确保光功率从III-V族有源区高效传输到硅波导,克服了先前方法的一个关键限制。由此产生的混合分布反馈(DFB)QCL在4.315 µm处表现出单模发射,并在高达72°C的温度下以脉冲模式运行。这一进展为完全集成的MIR光子电路开辟了新的可能性,在环境监测、生物医学诊断和工业传感等领域具有潜在应用。