Suppr超能文献

一种用于通过单二极管、双二极管和三二极管等效电路模型对太阳能光伏电池/组件进行参数估计的新型袋鼠逃逸优化器。

A novel kangaroo escape optimizer for parameter estimation of solar photovoltaic cells/modules via one, two and three-diode equivalent circuit modeling.

作者信息

Almutairi Sulaiman Z, Shaheen Abdullah M

机构信息

Department of Electrical Engineering, College of Engineering, Prince Sattam bin Abdulaziz University, Al Kharj, 16278, Saudi Arabia.

Department of Electrical Engineering, Faculty of Engineering, Suez University, P.O. Box: 43221, Suez, Egypt.

出版信息

Sci Rep. 2025 Sep 23;15(1):32669. doi: 10.1038/s41598-025-19917-4.

Abstract

This paper proposes a novel nature-inspired metaheuristic algorithm, termed Kangaroo Escape Optimization (KEO) for accurate parameter extraction of photovoltaic (PV) models including the single-diode, double-diode, and triple-diode configurations. The algorithm simulates the survival-driven escape behavior of Kangaroos in uncertain environments, where each Kangaroo represents a candidate solution and its movement embodies the search for a safer zone, i.e., a better objective value. The suggested KEO incorporates a dual-phase exploration mechanism of zigzag motion and long-jump escape to diversify the search, governed by a chaotic logistic energy adaptation strategy. In the exploitation phase, Kangaroos adaptively choose either a random group member or the best among a nearby subset to guide local search, while a decoy drop mechanism refines convergence without premature stagnation. The switching between exploration and exploitation is regulated by a probabilistic model that ensures dynamic adaptability throughout iterations. The proposed KEO is assessed against state-of-the-art optimizers using the CEC 2022 benchmarks suite. Also, the study incorporates a comprehensive Confidence Interval (CI) analysis to assess robustness and conducts a sensitivity study on hyperparameters. Furthermore, the effectiveness of the proposed KEO approach is assessed using real-world current-voltage (I-V) datasets obtained from two benchmark PV modules: RTC France and Photowatt-PWP-201 PV modules. A detailed comparative study reveals that the KEO delivers superior performance relative to several optimization algorithms previously utilized for PV parameter identification. Specifically, KEO exhibits enhanced accuracy, robustness, and convergence efficiency when estimating the electrical parameters of solar cells across different equivalent circuit models. Moreover, the proposed KEO demonstrates significant performance under diverse irradiance and temperature conditions. The findings confirm KEO's capacity to reliably capture the complex nonlinear dynamics inherent in PV systems, positioning it as a versatile and powerful optimization tool for a broad range of renewable energy modeling tasks. The source code of THRO is publicly available at https://www.mathworks.com/matlabcentral/fileexchange/181949-a-novel-kangaroo-escape-optimizer .

摘要

本文提出了一种新颖的受自然启发的元启发式算法,称为袋鼠逃逸优化(KEO),用于精确提取光伏(PV)模型的参数,包括单二极管、双二极管和三二极管配置。该算法模拟了袋鼠在不确定环境中受生存驱动的逃逸行为,其中每只袋鼠代表一个候选解,其移动体现了对更安全区域的搜索,即更好的目标值。所提出的KEO采用了锯齿形运动和跳远逃逸的双阶段探索机制,以实现搜索的多样化,由混沌逻辑能量自适应策略控制。在利用阶段,袋鼠自适应地选择一个随机组成员或附近子集中的最佳成员来指导局部搜索,而诱饵下降机制则在不过早停滞的情况下优化收敛。探索和利用之间的切换由概率模型调节,该模型确保在整个迭代过程中具有动态适应性。使用CEC 2022基准测试套件对所提出的KEO与现有最优算法进行了评估。此外,该研究还进行了全面的置信区间(CI)分析以评估鲁棒性,并对超参数进行了敏感性研究。此外,使用从两个基准光伏模块(RTC法国和Photowatt - PWP - 201光伏模块)获得的实际电流 - 电压(I - V)数据集评估了所提出的KEO方法的有效性。详细的比较研究表明,KEO相对于先前用于光伏参数识别的几种优化算法具有卓越的性能。具体而言,在估计不同等效电路模型的太阳能电池电气参数时,KEO表现出更高的准确性、鲁棒性和收敛效率。此外,所提出的KEO在不同的辐照度和温度条件下也表现出显著的性能。研究结果证实了KEO能够可靠地捕捉光伏系统中固有的复杂非线性动态,使其成为广泛的可再生能源建模任务的通用且强大的优化工具。THRO的源代码可在https://www.mathworks.com/matlabcentral/fileexchange/181949-a-novel-kangaroo-escape-optimizer上公开获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7f33/12457617/238623111a2e/41598_2025_19917_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验