Moustafa Ghareeb, Alnami Hashim, Ginidi Ahmed R, Shaheen Abdullah M
Department of Electrical and Electronic Engineering, College of Engineering and Computer Science, Jazan University, P.O. Box114, Jazan, 45142, Saudi Arabia.
Department of Electrical Engineering, Faculty of Engineering, Suez University, P.O. Box: 43221, Suez, Egypt.
Heliyon. 2024 Oct 30;10(21):e39902. doi: 10.1016/j.heliyon.2024.e39902. eCollection 2024 Nov 15.
Identification of photovoltaic (PV) module characteristics in solar systems is a vital task, nowadays, for optimal PV power estimation. In this paper, this challenge task has been studied using a novel advanced Kepler optimization algorithm (KOA). The standard version of KOA is adopted and assessed for getting the nine parameters of the PV triple diode model (3DM) considering three different practical PV modules. Kepler's principles of planetary motion are used by KOA to forecast the location and velocity of planets at any particular moment. However, the success rate of the KOA is not compatible, and its efficiency needs to be enhanced. As a result, an Improved KOA (IKOA) is created by incorporating an advanced mechanism of Local Escaping Operator (LEO), resulting in improved process of searching with evading local optima. This mechanism means that the exploitation approach will activate with around half of the solutions for every iteration starting at the initial phase of the iteration journey. The suggested IKOA besides the standard KOA are developed for predicting PV parameters for three distinct PV modules which are Photowatt PWP201, R.T.C France and STM6-40/36. The results corresponding to the latest algorithms are also compared with the proposed IKOA about different published works. The simulation findings reveal that the suggested IKOA exhibits notable average improvement rates for the three modules of 62.27 %, 55.1 %, and 32.12 %, respectively. Furthermore, the suggested IKOA asserts significant superiority and robustness over previously reported results.
如今,识别太阳能系统中的光伏(PV)模块特性对于优化光伏功率估计而言是一项至关重要的任务。在本文中,已使用一种新颖的先进开普勒优化算法(KOA)对这一具有挑战性的任务展开研究。采用并评估了KOA的标准版本,以获取光伏三二极管模型(3DM)的九个参数,其中考虑了三种不同的实际光伏模块。KOA运用开普勒行星运动原理来预测行星在任何特定时刻的位置和速度。然而,KOA的成功率并不理想,其效率有待提高。因此,通过纳入一种先进的局部逃逸算子(LEO)机制创建了改进的KOA(IKOA),从而改进了搜索过程并避免局部最优。该机制意味着在迭代过程的初始阶段,每次迭代大约一半的解会激活探索方法。除了标准KOA之外,还开发了建议的IKOA,用于预测三种不同光伏模块(即Photowatt PWP201、法国R.T.C和STM6 - 40/36)的光伏参数。还将最新算法的结果与建议的IKOA在不同已发表作品方面进行了比较。模拟结果表明,建议的IKOA对于这三个模块分别展现出显著的平均改进率,即62.27%、55.1%和32.12%。此外,建议的IKOA相对于先前报道的结果具有显著的优越性和稳健性。