Strzelecki Patryk, Ferté Tom, Klimczuk Tomasz, Zielińska-Jurek Anna, Szalewska-Pałasz Agnieszka, Nowicki Dariusz
Department of Bacterial Molecular Genetics, University of Gdansk, Gdansk, Poland.
Institut de Physique et Chimie des Matériaux de Strasbourg, Université de Strasbourg, Strasbourg, France.
Nanotechnol Sci Appl. 2025 Sep 18;18:387-403. doi: 10.2147/NSA.S542528. eCollection 2025.
Biofilm-related infections, especially those associated with medical devices like catheters, pose significant clinical challenges due to their resistance to conventional treatments. This study investigates a green chemistry-based approach to synthesize silver nanoparticles (AgNPs) stabilized with trans-cinnamaldehyde (-CA) and evaluates their potential for combating microbial biofilms and based on novel mechanism of action.
Silver nanoparticles (-CA-AgNPs) were synthesized using -CA as both a reducing and stabilizing agent. The NPs were then thoroughly characterized using UV-Vis spectroscopy, X-ray diffraction (XRD), electron microscopy (TEM, SEM, STEM), and dynamic light scattering (DLS). We evaluated its antimicrobial potential against the most prevalence biofilm-forming pathogens including and using minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) assays. Moreover, we investigated the mechanism of action of -CA-AgNPs underlying biofilm inhibition. Biofilm formation and structure were verified by SEM imagining.
DLS analysis confirmed that -CA-AgNPs had an average particle diameter of 2.5 nm, coupled with a notably negative zeta potential (-45 mV), indicative of good colloidal stability. -CA-AgNPs displayed potent antimicrobial properties, with MIC values ranging from 26 to 412 µg/mL and MBC values from 103 to 825 µg/mL. Biofilm formation inhibitory properties reached 88.74% of inhibition for and 70.60% for . Moreover, we found potent metal ion-chelating capabilities, importantly, in binding and reducing ferrous ions, the crucial factor of biofilm formation. Furthermore, -CA-AgNPs substantially impaired biofilm development on catheter surfaces, underscoring their robust antibiofilm potential.
Presented here -CA-AgNPs exhibit significant antimicrobial and antibiofilm activity. By effectively targeting critical elements in biofilm formation, such as ferrous ions, coupled with antimicrobial potential of both active compounds, these green-synthesized NPs have potential applications in significantly improving the safety and effectiveness of medical devices. However, further studies are needed to ensure their efficacy in clinical use.
生物膜相关感染,尤其是与导管等医疗设备相关的感染,因其对传统治疗方法具有抗性,给临床带来了重大挑战。本研究探讨了一种基于绿色化学的方法来合成用反式肉桂醛(-CA)稳定的银纳米颗粒(AgNPs),并基于新的作用机制评估其对抗微生物生物膜的潜力。
使用-CA作为还原剂和稳定剂来合成银纳米颗粒(-CA-AgNPs)。然后使用紫外-可见光谱、X射线衍射(XRD)、电子显微镜(透射电子显微镜、扫描电子显微镜、扫描透射电子显微镜)和动态光散射(DLS)对纳米颗粒进行全面表征。我们使用最小抑菌浓度(MIC)和最小杀菌浓度(MBC)测定法评估了其对包括和在内的最常见生物膜形成病原体的抗菌潜力。此外,我们研究了-CA-AgNPs抑制生物膜的作用机制。通过扫描电子显微镜成像验证生物膜的形成和结构。
动态光散射分析证实-CA-AgNPs的平均粒径为2.5nm,同时具有显著的负zeta电位(-45mV),表明具有良好的胶体稳定性。-CA-AgNPs表现出强大的抗菌性能,MIC值范围为26至412μg/mL,MBC值范围为103至825μg/mL。生物膜形成抑制性能对的抑制率达到88.74%,对的抑制率达到70.60%。此外,我们发现其具有强大的金属离子螯合能力,重要的是,在结合和还原亚铁离子方面,亚铁离子是生物膜形成的关键因素。此外,-CA-AgNPs显著损害了导管表面生物膜的形成,突出了其强大的抗生物膜潜力。
本文介绍的-CA-AgNPs表现出显著的抗菌和抗生物膜活性。通过有效靶向生物膜形成中的关键元素,如亚铁离子,再加上两种活性化合物的抗菌潜力,这些绿色合成的纳米颗粒在显著提高医疗设备的安全性和有效性方面具有潜在应用。然而,需要进一步研究以确保其在临床使用中的疗效。