Suppr超能文献

用于肺动脉高压风险预测的可解释机器学习模型:回顾性队列研究

Interpretable Machine Learning Model for Pulmonary Hypertension Risk Prediction: Retrospective Cohort Study.

作者信息

Jiang Hongxia, Gao Han, Wang Dexin, Zeng Qingli, Hao Xiaojun, Cheng Zhenshun

机构信息

Department of Respiratory and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Number 169, Donghu Road, Wuchang District, Wuhan, 430000, China.

Department of Respiratory and Critical Care Medicine, Qichun County People's Hospital, Huanggang, China.

出版信息

JMIR Med Inform. 2025 Sep 24;13:e74117. doi: 10.2196/74117.

Abstract

BACKGROUND

Pulmonary hypertension (PH) is a progressive disorder characterized by elevated pulmonary artery pressure and increased pulmonary vascular resistance, ultimately leading to right heart failure. Early detection is critical for improving patient outcomes.

OBJECTIVE

The diagnosis of PH primarily relies on right heart catheterization, but its invasive nature significantly limits its clinical use. Echocardiography, as the most common noninvasive screening and diagnostic tool for PH, provides valuable patient information. This study aims to identify key PH predictors from echocardiographic parameters, laboratory tests, and demographic data using machine learning, ultimately constructing a predictive model to support early noninvasive diagnosis of PH.

METHODS

This study compiled comprehensive datasets comprising echocardiography measurements, clinical laboratory data, and fundamental demographic information from patients with PH and matched controls. The final analytical cohort consisted of 895 participants with 85 evaluated variables. Recursive feature elimination was used to select the most relevant echocardiographic variables, which were subsequently integrated into a composite ultrasound index using machine learning techniques, XGBoost (Extreme Gradient Boosting). LASSO (least absolute shrinkage and selection operator) regression was applied to select the potential predictive variable from laboratory tests. Then, the ultrasound index variables and selected laboratory tests were combined to construct a logistic regression model for the predictive diagnosis of PH. The model's performance was rigorously evaluated using receiver operating characteristic curves, calibration plots, and decision curve analysis to ensure its clinical relevance and accuracy. Both internal and external validation were used to assess the performance of the constructed model.

RESULTS

A total of 16 echocardiographic parameters (right atrium diameter, pulmonary artery diameter, left atrium diameter, tricuspid valve reflux degree, right ventricular diameter, E/E' [ratio of mitral valve early diastolic inflow velocity (E) to mitral annulus early diastolic velocity (E')], interventricular septal thickness, left ventricular diameter, ascending aortic diameter, left ventricular ejection fraction, left ventricular outflow tract velocity, mitral valve reflux degree, pulmonary valve outflow velocity, mitral valve inflow velocity, aortic valve reflux degree, and left ventricular posterior wall thickness) combined with 2 laboratory biomarkers (prothrombin time activity and cystatin C) were identified as optimal predictors, forming a high-performance PH prediction model. The diagnostic model demonstrated high predictive accuracy, with an area under the receiver operating characteristic curve of 0.997 in the internal validation and 0.974 in the external validation. Both calibration plots and decision curve analysis validated the model's predictive accuracy and clinical applicability, with optimal performance observed at higher risk stratification cutoffs.

CONCLUSIONS

This model enhances early PH diagnosis through a noninvasive approach and demonstrates strong predictive accuracy. It facilitates early intervention and personalized treatment, with potential applications in broader cardiovascular disease management.

摘要

背景

肺动脉高压(PH)是一种进行性疾病,其特征为肺动脉压力升高和肺血管阻力增加,最终导致右心衰竭。早期检测对于改善患者预后至关重要。

目的

PH的诊断主要依赖于右心导管检查,但其侵入性在很大程度上限制了其临床应用。超声心动图作为PH最常用的非侵入性筛查和诊断工具,可提供有价值的患者信息。本研究旨在利用机器学习从超声心动图参数、实验室检查和人口统计学数据中识别PH的关键预测指标,最终构建一个预测模型以支持PH的早期非侵入性诊断。

方法

本研究汇编了综合数据集,包括来自PH患者和匹配对照的超声心动图测量值、临床实验室数据和基本人口统计学信息。最终的分析队列由895名参与者和85个评估变量组成。采用递归特征消除法选择最相关的超声心动图变量,随后使用机器学习技术XGBoost(极端梯度提升)将其整合为一个综合超声指数。应用LASSO(最小绝对收缩和选择算子)回归从实验室检查中选择潜在的预测变量。然后,将超声指数变量和选定的实验室检查相结合,构建用于PH预测诊断的逻辑回归模型。使用受试者工作特征曲线、校准图和决策曲线分析对模型性能进行严格评估,以确保其临床相关性和准确性。采用内部和外部验证来评估所构建模型的性能。

结果

总共16个超声心动图参数(右心房直径、肺动脉直径、左心房直径、三尖瓣反流程度、右心室直径、E/E'[二尖瓣舒张早期血流速度(E)与二尖瓣环舒张早期速度(E')之比]、室间隔厚度、左心室直径、升主动脉直径、左心室射血分数、左心室流出道速度、二尖瓣反流程度、肺动脉瓣流出速度、二尖瓣流入速度、主动脉瓣反流程度和左心室后壁厚度)与2种实验室生物标志物(凝血酶原时间活性和胱抑素C)被确定为最佳预测指标,形成了一个高性能的PH预测模型。该诊断模型显示出较高的预测准确性,内部验证中受试者工作特征曲线下面积为0.997,外部验证中为0.974。校准图和决策曲线分析均验证了模型的预测准确性和临床适用性,在较高风险分层临界值时观察到最佳性能。

结论

该模型通过非侵入性方法增强了PH的早期诊断,并显示出强大的预测准确性。它有助于早期干预和个性化治疗,在更广泛的心血管疾病管理中具有潜在应用价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97a3/12459742/66b506251611/medinform-v13-e74117-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验