Suppr超能文献

The role of genetic variation in shaping phenotypic responses to diet in aging Drosophila melanogaster.

作者信息

Bak Nikolaj Klausholt, Mackay Trudy F C, Morgante Fabio, Nielsen Kåre Lehmann, Nielsen Jeppe Lund, Kristensen Torsten Nygaard, Rohde Palle Duun

机构信息

Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark.

Center for Human Genetics and Department of Genetics and Biochemistry, Clemson University, Greenwood, SC, USA.

出版信息

Heredity (Edinb). 2025 Sep 24. doi: 10.1038/s41437-025-00797-3.

Abstract

Nutrition plays a central role in healthy living, however, extensive variability in individual responses to dietary interventions complicates our understanding of its effects. Here we present a comprehensive study utilizing the Drosophila Genetic Reference Panel (DGRP), investigating how genetic variation influences responses to diet and aging. We performed quantitative genetic analyses of the impact of reduced nutrient intake on lifespan, locomotor activity, dry weight, and heat knockdown time (HKDT) measured on the same individual flies. We found a significant decrease in lifespan for flies exposed to a restricted diet compared to those on a control diet. Similarly, a notable reduction in dry weight was observed in 7 and 16-day-old flies on the restricted diet compared to the control diet. In contrast, flies on the restricted diet exhibited higher locomotor activity. Additionally, HKDT was found to be age-dependent. Further, we detected significant genotype-by-diet interaction (GDI), genotype-by-age interaction (GAI) and genotype-by-age-by-diet interaction (GADI) for all traits. Thus, environmental factors play a crucial role in shaping trait variation at different ages and diets, and/or distinct genetic variation influences these traits at different ages and diets. Our genome-wide association study also identified a quantitative trait locus for age-dependent dietary response. The observed GDI and GAI indicate that susceptibility to environmental influences changes as organisms age. These findings could have significant implications for understanding the genetic mechanisms underlying dietary responses and aging in Drosophila melanogaster, which may inform future research on dietary recommendations and interventions aimed at promoting healthy aging in humans. The identification of associations between DNA sequence variation and age-dependent dietary responses opens new avenues for research into the genetic mechanisms underlying these interactions.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验