Selim Omar A, Sarcon Aida, Tunaboylu Mehmet, Zhao Chunfeng, Moran Steven L
Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA.
Musculoskeletal Research Training (T32) Program, Mayo Clinic, Rochester, MN, USA.
Lab Anim (NY). 2025 Oct;54(10):259-269. doi: 10.1038/s41684-025-01601-9. Epub 2025 Sep 24.
Rhabdomyolysis following revascularization of the ischemic upper extremity can lead to life- and limb-threatening sequelae. In the context of replantations and vascularized composite allografting, a reconstructive procedure usually reserved for upper limb amputees, prolonged tissue ischemia is detrimental to extremity functional recovery. Currently, validated survival small animal models of extremity reperfusion injury that permit longitudinal assessment of limb function are lacking. So far, studies that evaluated reperfusion injury-induced neuromuscular impairment have relied on terminal ex vivo procedures and did not provide clinically translatable measurements. Here we present a reliable rat model of extremity post-reperfusion syndrome (PRS) that comprehensively recapitulates the biochemical hallmarks of rhabdomyolysis secondary to upper-extremity reperfusion injury and allows the monitoring of in vivo upper limb function using clinically relevant electrodiagnostic and kinematic metrics. In addition to inducing severe metabolic derangements, our forelimb PRS model provided insights on gross motor and electrophysiological alterations following upper-extremity reperfusion injury. We identify gait coordination parameters-such as stride frequency and the forelimb-hindlimb coordination index-and electrophysiological metrics, including compound muscle action potential amplitude, as objective and noninvasive outcome measures for assessing limb function in small animal models of extremity PRS. This comprehensive, validated functional model can serve as an invaluable tool to evaluate therapeutics or preconditioning regimens to attenuate PRS and mitigate resulting neuromuscular dysfunction.
缺血性上肢血运重建后发生的横纹肌溶解症可导致危及生命和肢体的后遗症。在断肢再植和血管化复合组织异体移植(一种通常用于上肢截肢患者的重建手术)的背景下,长时间的组织缺血不利于肢体功能恢复。目前,缺乏经过验证的可对肢体功能进行纵向评估的小动物肢体再灌注损伤存活模型。到目前为止,评估再灌注损伤引起的神经肌肉损伤的研究依赖于终末期离体操作,且未提供可临床转化的测量方法。在此,我们展示了一种可靠的大鼠肢体再灌注综合征(PRS)模型,该模型全面概括了上肢再灌注损伤继发横纹肌溶解症的生化特征,并允许使用临床相关的电诊断和运动学指标监测体内上肢功能。除了引发严重的代谢紊乱外,我们的前肢PRS模型还提供了有关上肢再灌注损伤后总体运动和电生理改变的见解。我们确定了步态协调参数,如步频和前肢-后肢协调指数,以及电生理指标,包括复合肌肉动作电位幅度,作为评估小动物肢体PRS模型中肢体功能的客观且非侵入性的结果指标。这个全面且经过验证的功能模型可作为一个宝贵的工具,用于评估治疗方法或预处理方案,以减轻PRS并缓解由此产生的神经肌肉功能障碍。