Pathak Spandan, O'Neill Kate M, Robinson Emily K, Hourwitz Matt J, Herr Corey, Fourkas John T, Giniger Edward, Losert Wolfgang
College of Computer, Mathematical and Natural Sciences, Institute for Physical Science and Technology, University of Maryland, College Park, College Park, United States.
Department of Physics, College of Computer, Mathematical and Natural Sciences, University of Maryland, College Park, College Park, MD, United States.
Front Cell Dev Biol. 2025 Sep 10;13:1631520. doi: 10.3389/fcell.2025.1631520. eCollection 2025.
The development of axons and dendrites (neurites) in a neural circuit relies on the dynamic interplay of cytoskeletal components, especially actin, and the integration of diverse environmental cues. Building on prior findings that actin dynamics can serve as a primary sensor of physical guidance cues, this work investigates the role of nanotopography in modulating and guiding actin waves and neurite-tip dynamics during early neural circuit development. Although actin dynamics is well known to contribute to pathfinding in wide axonal tips, typically referred to as growth cones, we also observe dynamic actin remodeling throughout neurites and at other, narrower, neurite tips. We find that actin-wave speeds do not change significantly in the first 2 weeks of neurite development on flat substrates, but decrease over the same period in neurites on nanoridges. The ability of nanoridges to guide actin waves and the neurite-tip direction also decreases as neurites mature, both for narrow tips and wide growth cones. This change in responsiveness to physical guidance cues with neuronal maturation may impact the regenerative capacity of developing neural cells that are inserted into mature brains.
神经回路中轴突和树突(神经突)的发育依赖于细胞骨架成分(尤其是肌动蛋白)的动态相互作用以及多种环境线索的整合。基于肌动蛋白动力学可作为物理引导线索的主要传感器这一先前发现,这项研究调查了纳米拓扑结构在早期神经回路发育过程中对肌动蛋白波和神经突尖端动态的调节和引导作用。尽管众所周知肌动蛋白动力学有助于在通常称为生长锥的宽轴突尖端进行路径寻找,但我们也观察到整个神经突以及其他更窄的神经突尖端都存在动态肌动蛋白重塑。我们发现,在平坦基质上神经突发育的前两周,肌动蛋白波速度没有显著变化,但在纳米脊上的神经突中,同一时期肌动蛋白波速度会降低。纳米脊引导肌动蛋白波和神经突尖端方向的能力也会随着神经突成熟而降低,无论是窄尖端还是宽生长锥都是如此。随着神经元成熟,对物理引导线索反应性的这种变化可能会影响插入成熟大脑中的发育中神经细胞的再生能力。