Numssen Ole, Martin Carla W, Worbs Torge, Thielscher Axel, Weise Konstantin, Knösche Thomas R
Methods and Development Group Brain Networks, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
Institute of Computer Science, Martin-Luther-Universität Halle-Wittenberg, Halle, Germany.
bioRxiv. 2025 Sep 19:2025.09.19.677136. doi: 10.1101/2025.09.19.677136.
Multichannel transcranial magnetic stimulation (mTMS) enables electronic steering of induced electric fields across multiple cortical targets without physical coil repositioning, addressing key limitations of conventional single-channel TMS (sTMS). However, determining optimal input currents for focal stimulation remains challenging, and different mTMS systems have not been systematically compared under realistic hardware constraints.
To develop an user-centric framework for optimizing and assessing mTMS focality by introducing a generic optimization algorithm, establishing meaningful focality metrics, and comparing mTMS coil arrays with traditional single-channel TMS across cortical targets.
We developed a fast optimization framework incorporating target E-field constraints via parametrization of degenerated hyperellipsoids, explicitly integrating current-rate limits, for example from stimulator electronics and coil heating. Using high-resolution finite-element models of nine individual brains, we compared two mTMS designs (5-channel planar and 6/12-channel spherical systems) with standard sTMS figure-of-eight coils. Three complementary metrics quantified performance: Focality, Target2Max, and OverstimulatedArea.
Despite using a single optimized placement for all region-of-interest targets, mTMS achieved focality comparable to repositioned single-channel TMS. For superficial targets, single-channel TMS showed slightly better focality, but for deeper cortical targets (>25mm skin-cortex distance), mTMS performed similarly. More stimulation channels improved focality but required stronger current-rate constraints. The planar design performed better for deeper targets, while spherical designs improved with additional channels.
mTMS systems demonstrate remarkable performance comparable to standard TMS, enabling efficient multi-target stimulation without repositioning. Our open-source framework provides practical tools for designing and evaluating mTMS systems, supporting goal-directed mTMS development and effective application.
多通道经颅磁刺激(mTMS)能够在不重新定位物理线圈的情况下,对多个皮质靶点的感应电场进行电子控制,解决了传统单通道TMS(sTMS)的关键局限性。然而,确定聚焦刺激的最佳输入电流仍然具有挑战性,并且不同的mTMS系统在实际硬件限制下尚未进行系统比较。
通过引入通用优化算法、建立有意义的聚焦度指标,并在皮质靶点上比较mTMS线圈阵列与传统单通道TMS,开发一个以用户为中心的框架来优化和评估mTMS的聚焦度。
我们开发了一个快速优化框架,通过退化超椭球体的参数化纳入目标电场约束,明确整合电流速率限制,例如来自刺激器电子设备和线圈加热的限制。使用九个个体大脑的高分辨率有限元模型,我们将两种mTMS设计(5通道平面和6/12通道球形系统)与标准的sTMS八字形线圈进行了比较。三个互补指标量化了性能:聚焦度、目标到最大值和过度刺激区域。
尽管对所有感兴趣区域的靶点都使用了单一优化放置,但mTMS实现的聚焦度与重新定位的单通道TMS相当。对于浅表靶点,单通道TMS显示出略好的聚焦度,但对于更深的皮质靶点(皮肤-皮质距离>25mm),mTMS表现类似。更多的刺激通道改善了聚焦度,但需要更强的电流速率约束。平面设计对于更深的靶点表现更好,而球形设计随着额外通道的增加而有所改进。
mTMS系统表现出与标准TMS相当的卓越性能,无需重新定位即可实现高效的多靶点刺激。我们的开源框架为设计和评估mTMS系统提供了实用工具,支持目标导向的mTMS开发和有效应用。