Kovur Prashanthi, Kovur Krishna M, Rayat Dorsa Yahya, Wishart David S
Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada.
The Metabolomics Innovation Centre (TMIC), Edmonton, AB T6G 2E9, Canada.
Biosensors (Basel). 2025 Sep 8;15(9):589. doi: 10.3390/bios15090589.
Integration of machine learning (ML) and artificial intelligence (AI) into point-of-care (POC) sensor systems represents a transformative advancement in healthcare. This integration enables sophisticated data analysis and real-time decision-making in emergency and intensive care settings. AI and ML algorithms can process complex biomedical data, improve diagnostic accuracy, and enable early disease detection for better patient outcomes. Predictive analytics in POC devices supports proactive healthcare by analyzing data to forecast health issues and facilitating early intervention and personalized treatment. This review covers the key areas of ML and AI integration in POC devices, including data analysis, pattern recognition, real-time decision support, predictive analytics, personalization, automation, and workflow optimization. Examples of current POC devices that use ML and AI include AI-powered blood glucose monitors, portable imaging devices, wearable cardiac monitors, AI-enhanced infectious disease detection, and smart wound care sensors are also discussed. The review further explores new directions for POC sensors and ML integration, including mental health monitoring, nutritional monitoring, metabolic health tracking, and decentralized clinical trials (DCTs). We also examined the impact of integrating ML and AI into POC devices on healthcare accessibility, efficiency, and patient outcomes.
将机器学习(ML)和人工智能(AI)集成到即时护理(POC)传感器系统中,代表了医疗保健领域的一项变革性进展。这种集成能够在急诊和重症监护环境中进行复杂的数据分析和实时决策。人工智能和机器学习算法可以处理复杂的生物医学数据,提高诊断准确性,并实现疾病的早期检测,从而为患者带来更好的治疗效果。即时护理设备中的预测分析通过分析数据来预测健康问题,并促进早期干预和个性化治疗,从而支持积极主动的医疗保健。本综述涵盖了即时护理设备中机器学习和人工智能集成的关键领域,包括数据分析、模式识别、实时决策支持、预测分析、个性化、自动化和工作流程优化。还讨论了当前使用机器学习和人工智能的即时护理设备的示例,包括人工智能驱动的血糖监测仪、便携式成像设备、可穿戴心脏监测仪、人工智能增强的传染病检测以及智能伤口护理传感器。该综述进一步探讨了即时护理传感器与机器学习集成的新方向,包括心理健康监测、营养监测、代谢健康跟踪和去中心化临床试验(DCT)。我们还研究了将机器学习和人工智能集成到即时护理设备中对医疗保健可及性、效率和患者治疗效果的影响。