Suppr超能文献

基于深度学习方法的大肠息肉分割:一项系统综述。

Colorectal Polyp Segmentation Based on Deep Learning Methods: A Systematic Review.

作者信息

Liu Xin, Isa Nor Ashidi Mat, Chen Chao, Lv Fajin

机构信息

School of Electrical and Electronic Engineering, Engineering Campus, Universiti Sains Malaysia, Pulau Pinang 14300, Malaysia.

School of Automation and Information Engineering, Sichuan University of Science and Engineering, Yibin 644000, China.

出版信息

J Imaging. 2025 Aug 27;11(9):293. doi: 10.3390/jimaging11090293.

Abstract

Colorectal cancer is one of the three most common cancers worldwide. Early detection and assessment of polyps can significantly reduce the risk of developing colorectal cancer. Physicians can obtain information about polyp regions through polyp segmentation techniques, enabling the provision of targeted treatment plans. This study systematically reviews polyp segmentation methods. We investigated 146 papers published between 2018 and 2024 and conducted an in-depth analysis of the methodologies employed. Based on the selected literature, we systematically organized this review. First, we analyzed the development and evolution of the polyp segmentation field. Second, we provided a comprehensive overview of deep learning-based polyp image segmentation methods and the Mamba method, as well as video polyp segmentation methods categorized by network architecture, addressing the challenges faced in polyp segmentation. Subsequently, we evaluated the performance of 44 models, including segmentation performance metrics and real-time analysis capabilities. Additionally, we introduced commonly used datasets for polyp images and videos, along with metrics for assessing segmentation models. Finally, we discussed existing issues and potential future trends in this area.

摘要

结直肠癌是全球三大最常见癌症之一。息肉的早期检测和评估可显著降低患结直肠癌的风险。医生可通过息肉分割技术获取有关息肉区域的信息,从而能够提供针对性的治疗方案。本研究系统回顾了息肉分割方法。我们调查了2018年至2024年间发表的146篇论文,并对所采用的方法进行了深入分析。基于所选文献,我们系统地组织了本综述。首先,我们分析了息肉分割领域的发展与演变。其次,我们全面概述了基于深度学习的息肉图像分割方法和曼巴方法,以及按网络架构分类的视频息肉分割方法,探讨了息肉分割中面临的挑战。随后,我们评估了44个模型的性能,包括分割性能指标和实时分析能力。此外,我们介绍了息肉图像和视频常用的数据集,以及评估分割模型的指标。最后,我们讨论了该领域现存的问题和潜在的未来趋势。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/946c/12470534/784842687ecc/jimaging-11-00293-g001.jpg

相似文献

引用本文的文献

本文引用的文献

2
TransRUPNet for Improved Polyp Segmentation.
Annu Int Conf IEEE Eng Med Biol Soc. 2024 Jul;2024:1-4. doi: 10.1109/EMBC53108.2024.10781511.
4
Adaptive cascade decoders for segmenting challenging regions in medical images.
Comput Biol Med. 2025 Feb;185:109572. doi: 10.1016/j.compbiomed.2024.109572. Epub 2024 Dec 20.
6
Highlighted Diffusion Model as Plug-In Priors for Polyp Segmentation.将突出扩散模型用作息肉分割的插件先验。
IEEE J Biomed Health Inform. 2025 Feb;29(2):1209-1220. doi: 10.1109/JBHI.2024.3485767. Epub 2025 Feb 10.
7
Colorectal polyp segmentation with denoising diffusion probabilistic models.基于去噪扩散概率模型的结直肠息肉分割。
Comput Biol Med. 2024 Sep;180:108981. doi: 10.1016/j.compbiomed.2024.108981. Epub 2024 Aug 14.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验