Suppr超能文献

利用眼底照片对视网膜神经纤维进行自动算法辅助分割

Automatic Algorithm-Aided Segmentation of Retinal Nerve Fibers Using Fundus Photographs.

作者信息

Luján Villarreal Diego

机构信息

Departamento de Mecatrónica y Biomédica, Escuela de Ingeniería y Ciencias, Instituto Tecnológico y de Estudios Superiores de Monterrey, Monterrey 64700, Mexico.

出版信息

J Imaging. 2025 Aug 28;11(9):294. doi: 10.3390/jimaging11090294.

Abstract

This work presents an image processing algorithm for the segmentation of the personalized mapping of retinal nerve fiber layer (RNFL) bundle trajectories in the human retina. To segment RNFL bundles, preprocessing steps were used for noise reduction and illumination correction. Blood vessels were removed. The image was fed to a maximum-minimum modulation algorithm to isolate retinal nerve fiber (RNF) segments. A modified Garway-Heath map categorizes RNF orientation, assuming designated sets of orientation angles for aligning RNFs direction. Bezier curves fit RNFs from the center of the optic disk (OD) to their corresponding end. Fundus images from five different databases ( = 300) were tested, with 277 healthy normal subjects and 33 classified as diabetic without any sign of diabetic retinopathy. The algorithm successfully traced fiber trajectories per fundus across all regions identified by the Garway-Heath map. The resulting trace images were compared to the Jansonius map, reaching an average efficiency of 97.44% and working well with those of low resolution. The average mean difference in orientation angles of the included images was 11.01 ± 1.25 and the average RMSE was 13.82 ± 1.55. A 24-2 visual field (VF) grid pattern was overlaid onto the fundus to relate the VF test points to the intersection of RNFL bundles and their entry angles into the OD. The mean standard deviation (95% limit) obtained 13.5° (median 14.01°), ranging from less than 1° to 28.4° for 50 out of 52 VF locations. The influence of optic parameters was explored using multiple linear regression. Average angle trajectories in the papillomacular region were significantly influenced ( < 0.00001) by the latitudinal optic disk position and disk-fovea angle. Given the basic biometric ground truth data (only fovea and OD centers) that is publicly accessible, the algorithm can be customized to individual eyes and distinguish fibers with accuracy by considering unique anatomical features.

摘要

这项工作提出了一种图像处理算法,用于分割人视网膜中视网膜神经纤维层(RNFL)束轨迹的个性化映射。为了分割RNFL束,使用了预处理步骤来降噪和进行光照校正。去除了血管。将图像输入到最大-最小调制算法中以分离视网膜神经纤维(RNF)段。一种改进的Garway-Heath图对RNF方向进行分类,假设为对齐RNF方向指定了一组方向角。贝塞尔曲线从视盘(OD)中心拟合到相应的RNF终点。对来自五个不同数据库(n = 300)的眼底图像进行了测试,其中277名是健康正常受试者,33名被归类为糖尿病患者但无任何糖尿病视网膜病变迹象。该算法成功地在Garway-Heath图确定的所有区域中追踪了每个眼底的纤维轨迹。将所得的追踪图像与Jansonius图进行比较,平均效率达到97.44%,并且在低分辨率图像上也能很好地工作。所纳入图像的方向角平均均值差异为11.01±1.25,平均均方根误差为13.82±1.55。将24-2视野(VF)网格图案叠加在眼底上,以将VF测试点与RNFL束的交叉点及其进入OD的角度相关联。获得的平均标准差(95%限值)为13.5°(中位数14.01°),52个VF位置中的50个位置范围从小于1°到28.4°。使用多元线性回归探索了光学参数的影响。乳头黄斑区域的平均角度轨迹受到纬度视盘位置和视盘-中央凹角度的显著影响(P < 0.00001)。鉴于可公开获取的基本生物特征基本事实数据(仅中央凹和OD中心),该算法可以针对个体眼睛进行定制,并通过考虑独特的解剖特征准确区分纤维。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b064/12470814/7017abe13b1e/jimaging-11-00294-g001.jpg

相似文献

10
Optic nerve head and fibre layer imaging for diagnosing glaucoma.用于诊断青光眼的视神经乳头和纤维层成像。
Cochrane Database Syst Rev. 2015 Nov 30;2015(11):CD008803. doi: 10.1002/14651858.CD008803.pub2.

本文引用的文献

2
Sectoral Changes in Neuroretinal Rim Pallor Across Refractive Error.不同屈光不正患者神经视网膜边缘苍白的扇形变化
Ophthalmol Sci. 2025 Jan 7;5(3):100705. doi: 10.1016/j.xops.2025.100705. eCollection 2025 May-Jun.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验