Suppr超能文献

噪声单电极细胞外记录的监督式尖峰分类可行性:通过微神经图记录的人类C类伤害感受器的系统研究。

Supervised spike sorting feasibility of noisy single-electrode extracellular recordings: Systematic study of human C-nociceptors recorded via microneurography.

作者信息

Troglio Alina, Konradi Peter, Fiebig Andrea, Pérez Garriga Ariadna, Röhrig Rainer, Dunham James, Kutafina Ekaterina, Namer Barbara

机构信息

Research Group Neuroscience, Interdisciplinary Centre for Clinical Research (IZKF), Faculty of Medicine, RWTH Aachen University, Aachen, Germany.

Institute of Neurophysiology, RWTH Aachen University Hospital, Aachen, Germany.

出版信息

PLoS One. 2025 Sep 26;20(9):e0329537. doi: 10.1371/journal.pone.0329537. eCollection 2025.

Abstract

Sorting spikes from noisy single-channel in-vivo extracellular recordings is challenging, particularly due to the lack of ground truth data. Microneurography, an electrophysiological technique for studying peripheral sensory systems, employs experimental protocols that time-lock a subset of spikes. Stable propagation speed of nerve signals enables reliable sorting of these spikes. Leveraging this property, we established ground truth labels for data collected in two European laboratories and designed a proof-of-concept open-source pipeline to process data across diverse hardware and software systems. Using the labels derived from the time-locked spikes, we employed a supervised approach instead of the unsupervised methods typically used in spike sorting. We evaluated multiple low-dimensional representations of spikes and found that raw signal features outperformed more complex approaches, which are effective in brain recordings. However, the choice of the optimal features remained dataset-specific, influenced by the similarity of average spike shapes and the number of fibers contributing to the signal. Based on our findings, we recommend tailoring lightweight algorithms to individual recordings and assessing the "sortability feasibility" based on achieved accuracy and the research question before proceeding with sorting of non-time-locked spikes in future projects.

摘要

从嘈杂的单通道体内细胞外记录中筛选出尖峰信号具有挑战性,尤其是由于缺乏真实数据。微神经图技术是一种用于研究外周感觉系统的电生理技术,它采用了对一部分尖峰信号进行时间锁定的实验方案。神经信号的稳定传播速度使得对这些尖峰信号进行可靠的筛选成为可能。利用这一特性,我们为在两个欧洲实验室收集的数据建立了真实标签,并设计了一个概念验证的开源管道,以处理跨不同硬件和软件系统的数据。利用从时间锁定尖峰信号中得出的标签,我们采用了一种监督方法,而不是通常在尖峰信号筛选中使用的无监督方法。我们评估了尖峰信号的多种低维表示,发现原始信号特征优于在脑记录中有效的更复杂方法。然而,最佳特征的选择仍然是特定于数据集的,受到平均尖峰形状的相似性以及对信号有贡献的纤维数量的影响。基于我们的发现,我们建议针对单个记录定制轻量级算法,并在未来项目中对非时间锁定尖峰信号进行筛选之前,根据所达到的准确性和研究问题评估“可筛选性可行性”。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb85/12469167/eb6b435ab9aa/pone.0329537.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验