Paul Trishna, Beniwal Alka, Rohil Mukesh Kumar
Department of Computer Science and Information Systems, Birla Institute of Technology and Science Pilani, Vidya Vihar, Pilani, 333031, Rajasthan, India.
Department of Computer Science and Engineering, Pandit Deendayal Energy University, Raisan, Gandhinagar, 382426, Gujarat, India.
Sci Rep. 2025 Sep 26;15(1):33231. doi: 10.1038/s41598-025-18318-x.
In this research, we slightly modify the conventional pipeline such that it (1) sets a minimum triangulation angle of 3°, (2) reduces (and possibly minimizes) overall re-projection error by simultaneously optimizing all camera poses and 3D points in the bundle adjustment step, and (3) uses a tiling buffer size of 1024 × 1024, to generate, from a set of 2D images, a detailed 3D models of complex objects. We systematically showcase the versatility of this improved photogrammetric pipeline by applying it to three datasets - a proprietary dataset (money plant) and two publicly available datasets (a statue and an old computer). To the best of our knowledge, while previous research has employed photogrammetry techniques for 3D model generation, none has systematically defined the 3d reconstruction pipeline, with a focus on underlying mathematical concepts, Additionally, there has been a lack of evaluation of how the quality of input 2D images impacts quality of the resulting 3D models. Our study evaluates the entropy and image quality (using BRISQUE scores) of the 3D model generated in relation to the image quality of the set of input 2D images, providing insights into the reliability of the proposed photogrammetric approach. Despite utilizing a low-quality image dataset as input, we demonstrated that we achieved a high-quality 3D model. Furthermore, we observed less differences in image quality when comparing the 3D model with the original 2D images. Overall, our research contributes to both theoretical understanding and practical application of photogrammetry for 3D reconstruction as experimented on three distinct image datasets. As a future research scope, we provide suggestions for possible parallelization of some of the steps of the 3D reconstruction pipeline.
在本研究中,我们对传统流程进行了轻微修改,使其:(1) 设置最小三角测量角度为3°;(2) 在光束法平差步骤中通过同时优化所有相机姿态和三维点来减少(并可能最小化)整体重投影误差;(3) 使用大小为1024×1024的平铺缓冲区,以便从一组二维图像生成复杂物体的详细三维模型。我们通过将其应用于三个数据集——一个专有数据集(金钱树)和两个公开可用数据集(一座雕像和一台旧电脑),系统地展示了这种改进的摄影测量流程的通用性。据我们所知,虽然之前的研究已经采用摄影测量技术来生成三维模型,但没有一项研究系统地定义三维重建流程,且重点关注基础数学概念。此外,还缺乏对输入二维图像质量如何影响所得三维模型质量的评估。我们的研究评估了与输入二维图像集的图像质量相关的三维模型生成的熵和图像质量(使用BRISQUE分数),从而深入了解所提出的摄影测量方法的可靠性。尽管使用低质量图像数据集作为输入,但我们证明我们实现了高质量的三维模型。此外,当将三维模型与原始二维图像进行比较时,我们观察到图像质量的差异较小。总体而言,我们的研究有助于对摄影测量用于三维重建的理论理解和实际应用,这是在三个不同的图像数据集上进行实验得出的。作为未来的研究方向,我们为三维重建流程的某些步骤可能的并行化提供了建议。