Suppr超能文献

基于对比增强乳腺X线摄影和动态对比增强磁共振成像的放射组学特征的机器学习与深度学习用于乳腺癌特征分析

Machine and Deep Learning on Radiomic Features from Contrast-Enhanced Mammography and Dynamic Contrast-Enhanced Magnetic Resonance Imaging for Breast Cancer Characterization.

作者信息

Fusco Roberta, Granata Vincenza, Petrosino Teresa, Vallone Paolo, Iasevoli Maria Assunta Daniela, Mattace Raso Mauro, Setola Sergio Venanzio, Pupo Davide, Ferrara Gerardo, Fanizzi Annarita, Massafra Raffaella, Lafranceschina Miria, La Forgia Daniele, Greco Laura, Ferranti Francesca Romana, De Soccio Valeria, Vidiri Antonello, Botta Francesca, Dominelli Valeria, Cassano Enrico, Trombadori Charlotte Marguerite Lucille, Belli Paolo, Trecate Giovanna, Tenconi Chiara, De Santis Maria Carmen, Boldrini Luca, Petrillo Antonella

机构信息

Radiology Division, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy.

Pathology Division, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy.

出版信息

Bioengineering (Basel). 2025 Sep 2;12(9):952. doi: 10.3390/bioengineering12090952.

Abstract

OBJECTIVE

The aim of this study was to evaluate the accuracy of machine and deep learning approaches on radiomics features obtained by Dynamic Contrast Enhanced Magnetic Resonance Imaging (DCE-MRI) and contrast enhanced mammography (CEM) in the characterization of breast cancer and in the prediction of the tumor molecular profile.

METHODS

A total of 153 patients with malignant and benign lesions were analyzed and underwent MRI examinations. Considering the histological findings as the ground truth, three different types of findings were used in the analysis: (1) benign versus malignant lesions; (2) G1 + G2 vs. G3 classification; (3) the presence of human epidermal growth factor receptor 2 (HER2+ vs. HER2-). Radiomic features (n = 851) were extracted from manually segmented regions of interest using the PyRadiomics platform, following IBSI-compliant protocols. Highly correlated features were excluded, and the remaining features were standardized using z-score normalization. A feature selection process based on Elastic Net regularization (α = 0.5) was used to reduce dimensionality. Synthetic balancing of the training data was applied using the ROSE method to address class imbalance. Model performance was evaluated using repeated 10-fold cross-validation and AUC-based metrics.

RESULTS

Among the 153 patients enrolled in the studies, 113 were malignant lesions. Among the 113 malignant lesions, 32 had high grading (G3) and 66 had the HER2+ receptor. Radiomic features derived from both CEM and DCE-MRI showed strong discriminative performance for malignancy detection, with several features achieving AUCs above 0.80. Gradient Boosting Machine (GBM) achieved the highest accuracy (0.911) and AUC (0.907) in differentiating benign from malignant lesions. For tumor grading, the neural network model attained the best accuracy (0.848), while LASSO yielded the highest sensitivity (0.667) for detecting high-grade tumors. In predicting HER2+ status, the neural network also performed best (AUC = 0.669), with a sensitivity of 0.842.

CONCLUSIONS

Radiomics-based machine learning models applied to multiparametric CEM and DCE-MRI images offer promising, non-invasive tools for breast cancer characterization. The models effectively distinguished benign from malignant lesions and showed potential in predicting histological grade and HER2 status. These results demonstrate that radiomic features extracted from CEM and DCE-MRI, when analyzed through machine and deep learning models, can support accurate breast cancer characterization. Such models may assist clinicians in early diagnosis, histological grading, and biomarker assessment, potentially enhancing personalized treatment planning and non-invasive decision-making in routine practice.

摘要

目的

本研究旨在评估基于动态对比增强磁共振成像(DCE-MRI)和对比增强乳腺钼靶摄影(CEM)获得的放射组学特征,运用机器学习和深度学习方法在乳腺癌特征描述及肿瘤分子特征预测方面的准确性。

方法

共分析了153例患有恶性和良性病变的患者,并对其进行了MRI检查。以组织学检查结果作为金标准,分析中使用了三种不同类型的结果:(1)良性与恶性病变;(2)G1+G2与G3分级;(3)人表皮生长因子受体2的存在情况(HER2+与HER2-)。按照符合IBSI标准的方案,使用PyRadiomics平台从手动分割的感兴趣区域中提取放射组学特征(n = 851)。排除高度相关的特征,并使用z分数归一化对其余特征进行标准化。采用基于弹性网络正则化(α = 0.5)的特征选择过程来降低维度。使用ROSE方法对训练数据进行合成平衡以解决类别不平衡问题。使用重复10折交叉验证和基于AUC的指标评估模型性能。

结果

在纳入研究的153例患者中,113例为恶性病变。在这113例恶性病变中,32例为高分级(G3),66例具有HER2+受体。来自CEM和DCE-MRI的放射组学特征在恶性肿瘤检测方面均表现出强大的判别性能,一些特征的AUC高于0.80。梯度提升机(GBM)在区分良性与恶性病变方面达到了最高准确率(0.911)和AUC(0.907)。对于肿瘤分级,神经网络模型获得了最佳准确率(0.848),而LASSO在检测高分级肿瘤方面具有最高灵敏度(0.667)。在预测HER2+状态方面,神经网络也表现最佳(AUC = 0.669),灵敏度为0.842。

结论

应用于多参数CEM和DCE-MRI图像的基于放射组学的机器学习模型为乳腺癌特征描述提供了有前景的非侵入性工具。这些模型有效地区分了良性与恶性病变,并在预测组织学分级和HER2状态方面显示出潜力。这些结果表明,通过机器学习和深度学习模型分析从CEM和DCE-MRI中提取的放射组学特征,可以支持准确的乳腺癌特征描述。此类模型可能有助于临床医生进行早期诊断、组织学分级和生物标志物评估,有可能在常规实践中加强个性化治疗规划和非侵入性决策。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验